Short-Term Natural Gas Load Forecasting Based on Wavelet Neural Network Optimized by Genetic Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Natural gas load forecasting is especially important for gas-operated enterprises. It is extremely important to ensure the gas consumption of natural gas pipeline network. The traditional natural gas prediction model has low prediction accuracy and low generalization of the model, so that accurate load prediction cannot be performed. In order to overcome these defects, a natural gas load forecasting model based on wavelet neural network optimized by genetic algorithm is proposed. The genetic algorithm is used to optimize the parameters of wavelet neural network threshold and network connection weight to establish the best prediction model. The validity, feasibility, and accuracy of the prediction model are verified by the historical gate data provided by the enterprise. The simulation results show that the wavelet neural network using genetic algorithm to optimize the network parameters improves the prediction accuracy of the model and has sound engineering application value.

    Reference
    Related
    Cited by
Get Citation

刘春霞,李军,党伟超,白尚旺,王学斌.基于遗传算法优化小波神经网络的短期天然气负荷预测.计算机系统应用,2020,29(4):175-180

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 26,2019
  • Revised:September 11,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063