Fetal Abnormal Weight Prediction Based on Variable Time Interval LSTM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Prenatal physical examination of pregnant women is a import part of perinatal medicine. Prenatal prediction of fetal weight can provide an accurate reference for judging the healthy development of the fetus. The multiple physical examination records have the characteristics of variable time interval distribution during gestational period. This study proposes a variant of LSTM model, Variable Time Interval LSTM (VTI-LSTM), to solve the variable time intervals problem. The data of this study were from 122 462 medical records of 10 473 pregnant women from several women's hospitals during 2015 to 2018. The experiments of fetal weight prediction compare the traditional formula estimation methods with the machine learning methods such as GBDT, MLP, SVR, RNN, LSTM, and VTI-LSTM. The results show that Variable Time Interval LSTM has a good prediction result in the prediction of low birth-weight fetal and macrosomia.

    Reference
    Related
    Cited by
Get Citation

张硕彦,吴英飞,袁贞明,卢莎,胡文胜.基于变长时间间隔LSTM方法的胎儿异常体重预测.计算机系统应用,2020,29(3):39-46

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 08,2019
  • Revised:September 05,2019
  • Adopted:
  • Online: March 02,2020
  • Published: March 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063