Forest Type Classification by Hyperspectral Image Using Deep Belief Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The classification of forest types plays an important role in the management of forest ecosystems. Because of the large number of bands in hyperspectral imagery, the traditional methods of dimensionality reduction include features selection or feature extraction, affect the accuracy of forest type identification to a certain extent. The Deep Belief Network (DBN) is a semi-supervised learning method that uses all bands of hyperspectral image as input to avoid dimensionality reduction. Forest type identification of 8 townships in the west of Dehua County in Quanzhou was carried out. At the beginning, the classification of forest types in hyperspectral imagery was realized by Python language, according to HJ/1A hyperspectral image and forest management data. In addition, the influence of network depth and number of hidden layer units on overall accuracy and Kappa coefficient was discussed. The experimental results show that the network with 3 layers and 256 nodes is the optimal structure for forest type identification. The overall accuracy is 85.8% and the coefficient is 0.785, which is better than the classification result of support vector machine.

    Reference
    Related
    Cited by
Get Citation

罗仙仙,许松芽,肖美龙,严洪,陈正超.基于深度信念网络的高光谱影像森林类型识别.计算机系统应用,2020,29(4):260-265

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 20,2019
  • Revised:September 10,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063