Leveraging Commonsense Knowledge to Assist Multi-Step Reasoning for Multiple Choice Machine Reading Comprehension
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Typically, the options of multiple choice Machine Reading Comprehension (MRC) are not directly extracted from the given document. Thus the answers need to be summarized or rewritten or even inferred from document or from the world’s knowledge. Most existing models adopt attention mechanism to generate an interactive representation of document, question, and option. However, these models are limited by only using the given document rather than common knowledge, leading to poor result when dealing with questions requiring external knowledge assistance reasoning. To address questions requiring external knowledge assistance reasoning, we propose a novel neural model by integrating external commonsense knowledge to assist multi-step reasoning. Our model first interacts information among document, question, options, and related external knowledge by attention mechanism and then predicts answer by multi-step reasoning through the interaction results. The experimental results on the SemEval-2018 MCScript corpus show that the proposed model improves the accuracy of question answering requiring common knowledge reasoning.

    Reference
    Related
    Cited by
Get Citation

盛艺暄,兰曼.利用外部知识辅助和多步推理的选择题型机器阅读理解模型.计算机系统应用,2020,29(4):1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 14,2019
  • Revised:September 06,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063