Vehicle Queue Length Detection Method Based on Corner Feature Analysis
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of various situations caused by traffic jam, video analysis is used to realize real-time and efficient detection of vehicle queue length, so as to obtain more traffic information and improve traffic conditions. In this study, the improved FAST algorithm is obtained by combining the traditional FAST corner detection method with the process of motion detection. By using the improved FAST corner feature analysis technology, not only can the corner feature graph representing the presence of vehicles on the current traffic road be extracted, but also can the motion state of corner position be obtained. After the pretreatment of video under traffic monitoring, the static corner point features in a single lane form vehicle queuing, and PCA processing is carried out to obtain one-dimensional vector. Finally, morphological processing is carried out to detect the queue length of vehicles in a single lane. The experimental results show that the detection accuracy of this method is 98% on average, which can be applied to the actual scene.

    Reference
    Related
    Cited by
Get Citation

刘新平,张影,王风华.基于角点特征分析的车辆排队长度检测方法.计算机系统应用,2020,29(4):220-225

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 08,2019
  • Revised:September 05,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063