Medical Database Outlier Data Detection Algorithm Based on Hierarchical Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    When using the current algorithm to detect the discrete data in the medical database, problems such as long execution time, low detection efficiency and low detection rate of discrete points are caused by the lack of data filtering and other processes. Therefore, an algorithm for detecting discrete data in the medical database based on hierarchical deep learning is proposed. Firstly, the dynamic grid method is used to divide the sparse and dense areas in the space, so as to reduce the size of data detection and shorten the detection execution time. Then, the expert knowledge and data attribute value distribution information are integrated through the hierarchical deep learning process, and realize the detection of discrete data in medical database. Experimental results show that this algorithm can accurately complete the detection of discrete data in the medical database in a relatively short time, and has more advantages in application compared with the traditional algorithm.

    Reference
    Related
    Cited by
Get Citation

李晓峰,王妍玮,李东.基于层次化深度学习的医疗数据库离群数据检测算法.计算机系统应用,2020,29(3):180-186

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 03,2019
  • Revised:September 02,2019
  • Adopted:
  • Online: March 02,2020
  • Published: March 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063