Pedestrian Detection Model Based on Improved Faster R-CNN with SENet
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Computer vision is an important branch of machine learning at present, which requests much higher instantaneity and accuracy as the driverless and SI-Drive development. To optimize the current methods, the Faster Region-based Convolutional Neural Network (Faster R-CNN) is upgraded by adding SENet to it in this study. The upgraded Faster R-CNN model is applied in pedestrian detection. The new model does not only bring higher accuracy but also accomplish a better detection rate. To verify the new method, an examine was done in INRIA set and our set. The result shows that the upgraded model has a better detection performance on both accuracy and rate which can meet the related specifications of real-time pedestrian detection basically. Finally, the method was tested in the NVIDIA GTX1080Ti GPU. The results show that the mAP of upgraded model can achieve up to 92.7%, while the detection rate is up to 13.79 f/s under a relatively plain experimental condition. On the whole, the new model performs better than the traditional Faster R-CNN model.

    Reference
    Related
    Cited by
Get Citation

李克文,李新宇.基于SENet改进的Faster R-CNN行人检测模型.计算机系统应用,2020,29(4):266-271

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 02,2019
  • Revised:September 09,2019
  • Adopted:
  • Online: April 09,2020
  • Published: April 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063