Target Tracking System for Mobile Robot Based on Deep Learning
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In view of the current intelligent mobile robot in the tracking process due to the target shape on the changes in a loss of tracking target, using the Caffe deep learning framework and ROS robot operating system as a development platform, a high accuracy and high real-time target tracking system of mobile robots is designed for research. The GOTURN target tracking algorithm based on the twin convolutional neural network, which is robust to target deformation, viewing angle, slight occlusion and illumination changes is used, and the ROS system is used as a bridge to enable the offline training tracking model to be applied to the TurtleBot mobile robot in real time, also a detailed test is carried out. Experimental results show that the target tracking system is not only feasible in design, but also has the characteristics of low cost, high performance and easy expansion.

    Reference
    [1] 卢湖川,李佩霞,王栋.目标跟踪算法综述.模式识别与人工智能, 2018, 31(1):61-76
    [2] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2012. 1097-1105.
    [3] 刘甜甜.核相关滤波目标跟踪算法研究[硕士学位论文].武汉:华中科技大学, 2017.
    [4] 李鹏.基于全卷积孪生网络的目标跟踪算法研究[硕士学位论文].武汉:华中科技大学, 2018.
    [5] 曾钰廷.基于深度学习的物体检测与跟踪方法的研究[硕士学位论文].南昌:东华理工大学, 2018.
    [6] 史璐璐,张索非,吴晓富.基于Tiny Darknet全卷积孪生网络的目标跟踪.南京邮电大学学报(自然科学版), 2018, 38(4):89-95
    [7] 何信华,赵龙.基于改进高斯混合模型的实时运动目标检测与跟踪.计算机应用研究, 2010, 27(12):4768-4771
    [8] Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression networks. Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands. 2016. 749-765.
    [9] 王兴伟.基于ROS的临场移动机器人控制系统设计与研究[硕士学位论文].合肥:合肥工业大学, 2017.
    [10] Quigley M, Gerkey B, Conley K, et al. ROS:An open-source robot operating system. ICRA Workshop on Open Source Software. 2009. 1-6.
    [11] Willow Garage. Turtlebot. http://www.willowgarage.com/turtlebot.[2018-04-04/2019-07-30].
    [12] Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 5000-5008.
    [13] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 2261-2269.
    [14] Wang LJ, Ouyang WL, Wang XG, et al. Visual tracking with fully convolutional networks. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile. 2015. 3119-3127.
    [15] Jia YQ, Shelhamer E, Donahue J, et al. Caffe:Convolutional architecture for fast feature embedding. arXiv:1408. 5093, 2014.
    [16] Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 2015, 115(3):211-252.[doi:10.1007/s11263-015-0816-y
    [17] Kristan M, Matas J, Leonardis A, et al. A novel performance evaluation methodology for single-target trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11):2137-2155.[doi:10.1109/TPAMI.2016.2516982
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张新强,骆辉,周国顺.基于深度学习的移动机器人目标跟踪系统.计算机系统应用,2020,29(3):114-120

Copy
Share
Article Metrics
  • Abstract:2446
  • PDF: 3729
  • HTML: 2392
  • Cited by: 0
History
  • Received:July 30,2019
  • Revised:September 02,2019
  • Online: March 02,2020
  • Published: March 15,2020
Article QR Code
You are the first992281Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063