Target Tracking System for Mobile Robot Based on Deep Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In view of the current intelligent mobile robot in the tracking process due to the target shape on the changes in a loss of tracking target, using the Caffe deep learning framework and ROS robot operating system as a development platform, a high accuracy and high real-time target tracking system of mobile robots is designed for research. The GOTURN target tracking algorithm based on the twin convolutional neural network, which is robust to target deformation, viewing angle, slight occlusion and illumination changes is used, and the ROS system is used as a bridge to enable the offline training tracking model to be applied to the TurtleBot mobile robot in real time, also a detailed test is carried out. Experimental results show that the target tracking system is not only feasible in design, but also has the characteristics of low cost, high performance and easy expansion.

    Reference
    Related
    Cited by
Get Citation

张新强,骆辉,周国顺.基于深度学习的移动机器人目标跟踪系统.计算机系统应用,2020,29(3):114-120

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 30,2019
  • Revised:September 02,2019
  • Adopted:
  • Online: March 02,2020
  • Published: March 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063