Forecast of Individual Stock Closing Price Based on Improved Echo State Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The current stock price forecast is a hot issue in research. People are paying more and more attention to the establishment of stock price forecasting model, and improving the accuracy of stock price forecast has practical application value for stock investors. At present, the forecasting methods of stock prices are endless, among which the typical ones are traditional technical analysis and ARMA models. In order to improve the accuracy of prediction and consider the nonlinearity of stock market, this study proposes an improved stock price forecasting model of echo state neural network. The improved particle is applied to the characteristics of Echo State Neural Network (ESN). The group algorithm (GTPSO) searches the output connection weight of the ESN, and finally obtains the optimal solution, i.e., the optimal output connection weight of the ESN. The GTPSO algorithm is generally in the traditional Particle Swarm Optimization (PSO) algorithm. Based on the idea of taboo in the Tabu Search algorithm (TS) and the idea of mutation in the Genetic Algorithm (GA), the PSO is reduced to a local minimum during the learning process, and the ability of the PSO to search globally is improved. The forecasting model is used in the daily closing price forecast of individual stocks, and the closing price of the 11th day is predicted using the closing price of every 10 days. The correctness of the model is verified by experiments, and it is proved that the model has a good prediction effect.

    Reference
    Related
    Cited by
Get Citation

李莉,程露.基于改进回声状态神经网络的个股股价预测.计算机系统应用,2020,29(2):212-218

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 13,2019
  • Revised:August 22,2019
  • Adopted:
  • Online: January 16,2020
  • Published: February 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063