Hybrid Method for Short-Term Load Forecasting Based on K-Means and Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the development of smart grid technology, short-term power load forecasting becomes more and more important. To improve the accuracy of short-term electric load forecasting for individual users, this study proposes a load forecasting model, which is based on K-means and Convolutional Neural Network (CNN). Firstly, K-means is applied to group users into two categories. For users with strong daily correlation, the historical loads of adjacent time points and same time points in adjacent days are taken as input to the CNN model to extract abstract features for prediction. For users with weak daily correlation, the historical loads of the adjacent time points are utilized as features. To assess the performance of the proposed method, we conducted comparison experiments on real data with random forest and support vector regression. The experimental results show that the MAPE of the proposed approach is reduced by 20%.

    Reference
    Related
    Cited by
Get Citation

吕志星,张虓,王沈征,王一,程思瑾,秦承龙.基于K-Means和CNN的用户短期电力负荷预测.计算机系统应用,2020,29(3):161-166

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 27,2019
  • Revised:August 23,2019
  • Adopted:
  • Online: March 02,2020
  • Published: March 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063