Image Super-Resolution Reconstruction Method Based on Attentive Generative Adversarial Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The existing image super-resolution reconstruction method based on deep learning is easy to generate pseudo texture, and the rich local feature layer information in the original low-resolution image is not fully utilized. In order to improve image quality, a super-resolution reconstruction method based on attentive generative adversarial is proposed. The generator part of the method is constructed by attention recursive network, and a dense residual block structure is also introduced in the network. First, the generator extracts the local feature layer information of the image by using the self-encoding structure to improve the resolution. Then, the image is corrected by the discriminator. Finally, the image is reconstructed into a high-resolution image. In a variety of networks for peak signal-to-noise ratio super-resolution evaluation methods, the experimental results show that the designed network exhibits stable training performance, improves the visual quality of the image, and has strong robustness.

    Reference
    [1] 于喜娜. 基于学习的图像超分辨率重建方法研究[硕士学位论文]. 西安:西安理工大学, 2018.
    [2] Zhang L, Wu XL. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 2006, 15(8):2226-2238.[doi:10.1109/TIP.2006.877407
    [3] Zhang KB, Gao XB, Tao DC, et al. Single image super-resolution with non-local means and steering kernel regression. IEEE Transactions on Image Processing, 2012, 21(11):4544-4556.[doi:10.1109/TIP.2012.2208977
    [4] Timofte R, De Smet V, Van Gool L. A+:Adjusted anchored neighborhood regression for fast super-resolution. Proceedings of the 12th Asian Conference on Computer Vision. Singapore. 2014. 111-126.
    [5] Huang JB, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA. 2015. 5197-5206.
    [6] Tong T, Li G, Liu XJ, et al. Image super-resolution using dense skip connections. Proceedings of 2017 IEEE International Conference on Computer Vision. Venice, Italy. 2017. 4809-4817.
    [7] Zhang K, Zuo WM, Zhang L. Learning a single convolutional super-resolution network for multiple degradations. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 3262-3271.
    [8] 胡长胜, 詹曙, 吴从中. 基于深度特征学习的图像超分辨率重建. 自动化学报, 2017, 43(5):814-821
    [9] 苏健民, 杨岚心. 基于生成对抗网络的单帧遥感图像超分辨率. 计算机工程与应用, 2019, 55(12):202-207, 214.[doi:10.3778/j.issn.1002-8331.1807-0188
    [10] 段然, 周登文, 赵丽娟, 等. 基于多尺度特征映射网络的图像超分辨率重建. 浙江大学学报(工学版), 2019, 53(7):1331-1339.[doi:10.3785/j.issn.1008-973X.2019.07.012
    [11] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述. 自动化学报, 2013, 39(8):1202-1213
    [12] Yang X, Zhang Y, Zhou DK, et al. An improved iterative back projection algorithm based on ringing artifacts suppression. Neurocomputing, 2015, 162:171-179.[doi:10.1016/j.neucom.2015.03.055
    [13] Dong C, Loy CC, He KM, et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307.[doi:10.1109/TPAMI.2015.2439281
    [14] Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, QB, Canada. 2014. 2672-2680.
    [15] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 105-114.
    [16] Wang XT, Yu K, Wu SX, et al. Esrgan:Enhanced super-resolution generative adversarial networks. In:Leal-Taixé L, Roth S, eds. Computer Vision-ECCV 2018 Workshops. Munich, Germany. 2018. 63-79.
    [17] Qian R, Tan RT, Yang WH, et al. Attentive generative adversarial network for raindrop removal from a single image. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 2482-2491.
    [18] Zhang YL, Tian YP, Kong Y, et al. Residual dense network for image super-resolution. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 2472-2481.
    [19] 陈晨, 刘明明, 刘兵, 等. 基于残差网络的图像超分辨率重建算法. 计算机工程与应用. http://kns.cnki.net/kcms/detail/11.2127.TP.20190527.1720.009.html.[2019-07-05].
    [20] 陈龙彪, 谌雨章, 王晓晨, 等. 基于深度学习的水下图像超分辨率重建方法. 计算机应用, 2019, 39(9):2738-2743.[doi:10.11772/j.issn.1001-9081.2019020353
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

丁明航,邓然然,邵恒.基于注意力生成对抗网络的图像超分辨率重建方法.计算机系统应用,2020,29(2):205-211

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 13,2019
  • Revised:August 20,2019
  • Online: January 16,2020
  • Published: February 15,2020
Article QR Code
You are the first992297Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063