Semi-Supervised Person Re-Identification with One-Sample
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this study, we propose a one-sample person re-identification method, which adopts a progressive learning framework in the process of iteration in order to making full use of the characteristics of labeled data and unlabeled data to optimize the model. In this framework, we iteratively train convolutional neural network to update the model and utilize multiple-model training together to select the reliable pseudo-label data during label estimation. Then, we update training data for the next round of training. The training data is splited into three parts: labeled data, pseudo-labeled data, and indexed-labeled data. We set up the corresponding loss function for each set of data and update the CNN model by the joint training on the three parts. In the progress of iteration, the pseudo-labeled data and index-labeled data are constantly updated. Under the one-sample set, rank-1=65.3, mAP=45.6. When the rate of labeled data is increased to 40%, rank-1=83.8, mAP=64.9. The result indicates that the semi-supervised person re-identification method proposed in this study can provide excellent results comparable to the supervised learning method with less labeled data, which fully demonstrates the effectiveness of the method.

    Reference
    Related
    Cited by
Get Citation

单纯,王敏.半监督单样本深度行人重识别方法.计算机系统应用,2020,29(1):256-260

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 20,2019
  • Revised:July 16,2019
  • Adopted:
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063