Surface Grinding Temperature Prediction Based on Convolutional Neural Network
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [12]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to reduce the negative impact of excessive grinding temperature on the thermal damage of parts, and to improve the yield and quality of parts, this study establishes a surface grinding temperature prediction model based on convolutional neural network. Firstly, the temperature data is obtained through finite element simulation, and pre-processing is performed. Then, the convolutional neural network program is written by Google's open-end learning tool TensorFlow, and finally the prediction result is obtained and compared with the simulation value. The results show that the grinding temperature prediction model based on convolutional neural network has strong learning ability and nonlinear fitting ability, which greatly improves the prediction accuracy of grinding temperature.

    Reference
    [1] 马占龙, 王高文, 张健, 等. 基于有限元及神经网络的磨削温度仿真预测. 电子测量与仪器学报, 2013, 27(11):1080-1085
    [2] 蒋天一, 胡德金, 许开州, 等. 改进型BP神经网络对球面磨削最高温度的模拟与预测. 上海交通大学学报, 2011, 45(6):901-906
    [3] 马生彪. 磨削加工过程振动仿真与磨削温度预测[硕士学位论文]. 郑州:郑州大学, 2011.
    [4] 彭远志. 大平面砂轮磨削温度的理论分析及数值仿真[硕士学位论文]. 重庆:重庆大学, 2014.
    [5] Liu CJ, Ding WF, Li Z, et al. Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm. The International Journal of Advanced Manufacturing Technology, 2017, 89(5-8):2277-2285.[doi:10.1007/s00170-016-9267-z
    [6] Odior AO. Application of neural network and fuzzy model to grinding process control. Evolving Systems, 2013, 4(3):195-201.[doi:10.1007/s12530-013-9073-x
    [7] 房佳斌, 尹育航, 杨玉鹤, 等. 基于真实磨粒分布的砂轮建模及温度场仿真. 硅酸盐通报, 2016, 35(12):4212-4216, 4221
    [8] 李荣斌, 崔璨, 陈梦蝶. 平面磨削温度场有限元仿真及实验. 机械设计与研究, 2014, 30(6):81-85
    [9] 胡石雄, 李维刚, 杨威. 基于卷积神经网络的热轧带钢力学性能预报. 武汉科技大学学报, 2018, 41(5):338-344
    [10] Doman DA, Warkentin A, Bauer R. Finite element modeling approaches in grinding. International Journal of Machine Tools and Manufacture, 2009, 49(2):109-116.[doi:10.1016/j.ijmachtools.2008.10.002
    [11] Tahvilian AM, Champliaud H, Liu Z, et al. Study of workpiece temperature distribution in the contact zone during robotic grinding process using finite element analysis. Procedia CIRP, 2013, 12:205-210.[doi:10.1016/j.procir.2013.09.036
    [12] Wang ZX, Yu TB, Zhang TQ, et al. Grinding temperature field prediction by meshless finite block method with double infinite element. International Journal of Mechanical Sciences, 2019, 153-154:131-142.[doi:10.1016/j.ijmecsci.2019.01.037
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙为钊,周俊.基于卷积神经网络的平面磨削温度预测.计算机系统应用,2020,29(2):244-249

Copy
Share
Article Metrics
  • Abstract:1499
  • PDF: 2633
  • HTML: 1466
  • Cited by: 0
History
  • Received:June 28,2019
  • Revised:July 16,2019
  • Online: January 16,2020
  • Published: February 15,2020
Article QR Code
You are the first990809Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063