Data Stream Clustering Algorithm Based on Artificial Bee Colony Optimization
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In the traditional segmented data stream clustering algorithm, the inaccuracy of micro-cluster threshold radius T in the online part as well as the oversimplifying of the dealing process with the micro-cluster by the offline part leads to a low clustering quality. In order to break through such limitation, a data stream clustering algorithm on the basis of artificial bee colony optimization for offline part processing is proposed based on the existing dynamic sliding window model. This algorithm consists of two parts:(1) The online part dynamically adjusts the size of the window and improves the value of the micro-cluster threshold radius T according to the length of time that the data stays in the window so as to get micro clustering step by step. (2) The offline part uses the improved bee colony algorithm to continuously adjust dynamically to find the optimal clustering result. The experimental results show that this algorithm not only bears a high clustering quality, but also has fairly good ductility and stability.

    Reference
    [1] Ding SF, Wu FL, Qian J, et al. Research on data stream clustering algorithms. Artificial Intelligence Review, 2015, 43(4):593-600.[doi:10.1007/s10462-013-9398-7
    [2] Aggarwal CC, Han JW, Wang JY, et al. A framework for clustering evolving data streams. Proceedings of the 29th International Conference on Very Large Data Bases. Berlin, Germany. 2003. 81-92.
    [3] 周华平, 陈顺生. 基于动态可调衰减滑动窗口的变速数据流聚类算法. 计算机应用与软件, 2015, 32(11):255-260, 300.[doi:10.3969/j.issn.1000-386x.2015.11.059
    [4] Fahy C, Yang SX, Gongora M. Ant colony stream clustering:A fast density clustering algorithm for dynamic data streams. IEEE Transactions on Cybernetics, 2019, 49(6):2215-2228.[doi:10.1109/TCYB.2018.2822552
    [5] 肖裕权, 周肆清. 基于粒子群优化算法的数据流聚类算法. 计算机技术与发展, 2011, 21(10):43-46, 50.[doi:10.3969/j.issn.1673-629X.2011.10.011
    [6] 张忠平, 王浩, 薛伟, 等. 动态滑动窗口的数据流聚类方法. 计算机工程与应用, 2011, 47(7):135-138.[doi:10.3778/j.issn.1002-8331.2011.07.039
    [7] Karaboga D. An idea based on honey bee swarm for numerical optimization. Kayseri, Turkey:Erciyes University, 2005.
    [8] 周涓, 熊忠阳, 张玉芳, 等. 基于最大最小距离法的多中心聚类算法. 计算机应用, 2006, 26(6):1425-1427
    [9] 喻金平, 郑杰, 梅宏标. 基于改进人工蜂群算法的K均值聚类算法. 计算机应用, 2014, 34(4):1065-1069, 1088
    [10] 吴建胜, 张文鹏, 马垣. KDDCUP99数据集的数据分析研究. 计算机应用与软件, 2014, 31(11):321-325.[doi:10.3969/j.issn.1000-386x.2014.11.081
    [11] 廖江陵, 管有庆. 一种改进的模糊数据流聚类算法. 计算机技术与发展, 2017, 27(11):96-100.[doi:10.3969/j.issn.1673-629X.2017.11.021
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

贾东立,申飞,崔新宇.基于人工蜂群优化的数据流聚类算法.计算机系统应用,2020,29(2):145-150

Copy
Share
Article Metrics
  • Abstract:1347
  • PDF: 2219
  • HTML: 1183
  • Cited by: 0
History
  • Received:May 28,2019
  • Revised:July 10,2019
  • Online: January 16,2020
  • Published: February 15,2020
Article QR Code
You are the first990427Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063