Review on Image Corner Detection
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Corner detection is a basic subject in the field of machine vision and computer vision. Corner detection is sometimes called interest point. It not only simplifies the image information data, but also retains the more important feature information of the image to a certain extent. Corner detection includes three-dimensional scene reconstruction, motion estimation, visual tracking, image registration, and image matching. Computer vision has been widely used in the field of computer vision. This study classifies and describes the existing corner detection methods, which are mainly divided into gray-level intensity-based methods and edge contour-based methods. The other types of corner detection methods are also summarized, providing references for image corner detection technology.

    Reference
    [1] Lebeda K, Hadfield S, Matas J, et al. Texture-independent long-term tracking using virtual corners. IEEE Transactions on Image Processing, 2016, 25(1):359-371. doi:10.1109/TIP.2015.2497141
    [2] 刘阳成, 朱枫. 一种新的棋盘格图像角点检测算法. 中国图象图形学报, 2006, 11(5):656-660. doi:10.3969/j.issn.1006-8961.2006.05.008
    [3] 章为川, 孔祥楠, 宋文. 图像的角点检测研究综述. 电子学报, 2015, 43(11):2315-2321. doi:10.3969/j.issn.0372-2112.2015.11.026
    [4] Morevec HP. Towards automatic visual obstacle avoidance. Proceedings of the 5th International Joint Conference on Artificial Intelligence-Volume 2. Cambridge, UK. 1977. 584.
    [5] Harris C, Stephens M. A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference. Alvey, UK. 1988. 147-151.
    [6] Qiao YJ, Tang YC, Li JS. Improved Harris sub-pixel corner detection algorithm for chessboard image. Proceedings of the 2013 2nd International Conference on Measurement, Information and Control. Harbin, China. 2013:1408-1411.
    [7] 卢伟家, 刘缠牢. 一种基于Harris特征点检测的改进算法. 仪表技术与传感器, 2017, (12):98-100, 104. doi:10.3969/j.issn.1002-1841.2017.12.024
    [8] Wang ZC, Li R, Shao ZH, et al. Adaptive Harris corner detection algorithm based on iterative threshold. Modern Physics Letters B, 2017, 31(15):1750181. doi:10.1142/S0217984917501810
    [9] Smith SM, Brady JM. SUSAN-a new approach to low level image processing. International Journal of Computer Vision, 1997, 23(1):45-78. doi:10.1023/A:1007963824710
    [10] He LY, Zhou XY. An auto-adaptive threshold pre-detection SUSAN corner detection Algorithm. Proceedings of the 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, China. 2013. 511-514.
    [11] 王冠群, 马苗, 张艳宁, 等. 基于高斯变换的多尺度SUSAN角点检测方法. 计算机工程与应用, 2016, 52(12):184-188. doi:10.3778/j.issn.1002-8331.1407-0527
    [12] Trajkovic M, Hedley M. Fast corner detection. Image and Vision Computing, 1988, 16(2):75-87
    [13] Rosten E, Drummond T. Machine learning for high-speed corner detection. Proceedings of the 9th European Conference on Computer Vision. Graz, Austria. 2006. 430-443.
    [14] Park S, Kim G, Park J, et al. A 1. 5nJ/pixel super-resolution enhanced FAST corner detection processor for high accuracy AR. Proceedings of the ESSCIRC 2014-40th European Solid State Circuits Conference. Venice Lido, Italy. 2014. 191-194.
    [15] 赵亚利, 章为川, 李云红. 图像边缘轮廓自适应阈值的角点检测算法. 中国图象图形学报, 2016, 21(11):1502-1514. doi:10.11834/jig.20161110
    [16] 曾接贤, 李炜烨. 曲率尺度空间与链码方向统计的角点检测. 中国图象图形学报, 2014, 19(2):234-242
    [17] Rachmawati E, Supriana I, Khodra ML, et al. FAST corner detection in polygonal approximation of shape. Proceedings of the 2017 3rd International Conference on Science in Information Technology. Bandung, Indonesia. 2017. 166-170.
    [18] 刘相湖, 王涛, 张小哲. 对Freeman链码分析的角点检测算法. 计算机系统应用, 2018, 27(4):202-208. doi:10.15888/j.cnki.csa.006314
    [19] Mokhtarian F, Suomela R. Robust image corner detection through curvature scale space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(12):1376-1381. doi:10.1109/34.735812
    [20] Zhong BJ, Liao WH. Direct curvature scale space:Theory and corner detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3):508-512. doi:10.1109/TPAMI.2007.50
    [21] 李伟生, 李泽亚. 一种改进的多尺度自适应角点检测方法. 计算机应用与软件, 2016, 33(1):185-189. doi:10.3969/j.issn.1000-386x.2016.01.047
    [22] Awrangjeb M, Lu GJ. Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Transactions on Multimedia, 2008, 10(6):1059-1072. doi:10.1109/TMM.2008.2001384
    [23] Jin YT, Wang WL, Zhao YW, et al. Fast corner detector based on chord-to-point distance accumulation. Computer Science, 2014, 41(4):306-308, 313
    [24] Hossain MA, Tushar AK. Chord Angle Deviation using Tangent (CADT), an efficient and robust contour-based corner detector. Proceedings of IEEE International Conference on Imaging, Vision & Pattern Recognition. Dhaka, Bangladesh. 2017. 1-6.
    [25] Sadat RMN, Sayeeda Z, Salehin MM, et al. A corner detection method using angle accumulation. Proceedings of the 14th International Conference on Computer and Information Technology. Dhaka, Bangladesh. 2011. 95-99.
    [26] 金亦挺, 王万良, 赵燕伟, 等. 基于角度累加的鲁棒角点检测算法. 计算机辅助设计与图形学学报, 2017, 29(11):2005-2014. doi:10.3969/j.issn.1003-9775.2017.11.006
    [27] Gao X, Sattar F, Venkateswarlu R. Corner detection of gray level images using gabor wavelets. Proceedings of 2004 International Conference on Image Processing. Singapore, Singapore. 2004. 2669-2672.
    [28] Zhang WC, Wang FP, Zhu L, et al. Corner detection using Gabor filters. IET Image Processing, 2014, 8(11):639-646. doi:10.1049/iet-ipr.2013.0641
    [29] 田子怡, 李云红. 基于多尺度Gabor滤波器的角点检测. 国外电子测量技术, 2016, 35(7):75-79, 84. doi:10.3969/j.issn.1002-8978.2016.07.019
    [30] 高华. Log-Gabor梯度方向下的角点检测. 中国图象图形学报, 2017, 22(6):797-806
    [31] He AX, Yung NHC. Corner detector based on global and local curvature properties. Optical Engineering, 2008, 47(5):057008. doi:10.1117/1.2931681
    [32] 刘文进, 张蕾, 孙劲光. 近邻传播聚类优化的角点检测改进算法. 计算机工程与应用, 2016, 52(9):219-222. doi:10.3778/j.issn.1002-8331.1405-0303
    [33] 孔祥楠, 卫建华, 赵强, 等. 基于各向异性高斯核的角点检测. 电子测量技术, 2015, 38(8):69-72. doi:10.3969/j.issn.1002-7300.2015.08.016
    [34] Xing YX, Zhang DY, Zhao JH, et al. Robust fast corner detector based on filled circle and outer ring mask. IET Image Processing, 2016, 10(4):314-324. doi:10.1049/iet-ipr.2014.0952
    [35] Cho W, Park S, D'Avy J, et al. New corner detector using non-cornerness measure. Proceedings of IEEE International Conference on Consumer Electronics-Asia. Seoul, Repulic of Korea. 2016. 1-2.
    [36] Rockett PI. Performance assessment of feature detection algorithms:A methodology and case study on corner detectors. IEEE Transactions on Image Processing, 2003, 12(12):1668-1676. doi:10.1109/TIP.2003.818041
    [37] Awrangjeb M, Lu GJ, Murshed M. An affine resilient curvature scale-space corner detector. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, HI, USA. 2007. I-1233-I-1236.
    [38] 洪磊, 嵇保健, 凌超. 一种棋盘格靶标不完整角点识别的修正算法. 计算机辅助设计与图形学学报, 2016, 28(9):1521-1526. doi:10.3969/j.issn.1003-9775.2016.09.015
    [39] Lin XY, Zhu C, Zhang Q, et al. Geometric mesh corner detection using triangle principle. Electronics Letters, 2017, 53(20):1354-1356. doi:10.1049/el.2017.1353
    [40] 谢志峰, 吴佳萍, 章曙涵, 等. 基于深度神经网络的烟码智能识别方法. 计算机辅助设计与图形学学报, 2019, 31(1):111-117
    [41] Li YS, Xu JJ, Xia RJ, et al. Extreme-constrained spatial-spectral corner detector for image-level hyperspectral image classification. Pattern Recognition Letters, 2018, 109:110-119. doi:10.1016/j.patrec.2018.03.022
    [42] Wang LF, Zhao YN, Qin PL, et al. Fast Corner detection based on ORB and GroupSAC in complex scenes video image. Science Technology and Engineering, 2017, 17(2):88-94
    [43] 刘妍, 余淮, 杨文, 等. 利用SAR-FAST角点检测的合成孔径雷达图像配准方法. 电子与信息学报, 2017, 39(2):430-436
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

朱思聪,周德龙.角点检测技术综述.计算机系统应用,2020,29(1):22-28

Copy
Share
Article Metrics
  • Abstract:2505
  • PDF: 6485
  • HTML: 6127
  • Cited by: 0
History
  • Received:June 20,2019
  • Revised:July 16,2019
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the first990331Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063