Image Restoration Method Based on New Generator Structure
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the shortcomings of current image restoration algorithms, such as discontinuity of repair effect, limitation of missing size, and instability of training process, an image restoration method based on generation antagonistic network is proposed. Using convolutional neural network, we can actually repair images of any resolution. In order to realize the real restoration effect of high resolution and the full learning of image features, we propose to obtain high resolution images based on the details and structure of DenseNet propagating source images, so as to realize the generation of missing images. As Iizuka et al. proposed the large computation amount generated by the expanded convolution part in the two-discriminator method, we propose to use JPU (Joint Pyramid Upsampling) to accelerate the calculation. Experiments in CelebA and ImageNet show that the proposed method can truly repair most broken images.

    Reference
    Related
    Cited by
Get Citation

杨柳,王敏,林竹.基于新生成器结构的图像修复方法.计算机系统应用,2020,29(1):158-163

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 12,2019
  • Revised:July 08,2019
  • Adopted:
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063