Object Recognition Method Based on Improved YOLOv3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In complex natural scenes, object recognition encounters the problems such as background interference, occlusion of surrounding objects, and illumination changes. At the same time, most of the identified objects have different sizes and types. In view of the above-mentioned problem of object recognition, this study proposes a medium or large size object recognition method based on improved YOLOv3 in unrestricted natural scenes (CDSP-YOLO). This method uses CLAHE image enhancement preprocessing method to eliminate the influence of illumination changes on object recognition in natural scenes, and uses stochastic spatial sampling pooling (S3Pool) as the downsampling method of feature extraction network to preserve the spatial information of feature map to solve the background interference problem in complex environment, and improves multi-scale recognition to solve the problem that YOLOv3 is not effective for medium or large size object recognition. The experimental results show that the proposed method has an accuracy rate of 97% and a recall rate of 80% on the mobile communication tower test set. Compared with YOLOv3, the algorithm has better performance and application prospects in object recognition applications in unrestricted natural scenes.

    Reference
    Related
    Cited by
Get Citation

陈正斌,叶东毅,朱彩霞,廖建坤.基于改进YOLOv3的目标识别方法.计算机系统应用,2020,29(1):49-58

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 11,2019
  • Revised:July 05,2019
  • Adopted:
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063