Improved K-Means Traffic Data Clustering Based on Mutual Information and Divergence
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [12]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    K-means algorithm is a commonly used clustering algorithm and has been applied to traffic hotspot extraction. However, due to the number of clusters and the subjective setting of the initial clustering center, the traffic hotspots extracted by the existing clustering methods are often difficult to meet the requirements. Based on mutual information and divergence, an improved SK-means algorithm is proposed and applied to traffic hotspot extraction. In the proposed method, an initial clustering center is found based on mutual information between different points. In addition, the number of clusters is determined based on the ratio of mutual information and divergence. The proposed method is applied to the extraction of traffic hotspots in Chengdu for a certain period of time, and compared with the traditional K-means, the experimental results show that the proposed method has higher clustering accuracy and the extracted hotspots are more realistic.

    Reference
    [1] 王波, 余相君. 自适应布谷鸟搜索的并行K-means聚类算法. 计算机应用研究, 2018, 35(3):675-679
    [2] 李春生, 王耀南. 聚类中心初始化的新方法. 控制理论与应用, 2010, 27(10):1435-1440
    [3] Zhang G, Zhang CC, Zhang HY. Improved k-means algorithm based on density canopy. Knowledge-Based Systems, 2018, 145:289-297. doi:10.1016/j.knosys.2018.01.031
    [4] Lu B, Ju FY. An optimized genetic K-means clustering algorithm. Proceedings of 2012 International Conference on Computer Science and Information Processing. Xi'an, China. 2012. 1296-1299.
    [5] 喻金平, 郑杰, 梅宏标. 基于改进人工蜂群算法的K均值聚类算法. 计算机应用, 2014, 34(4):1065-1069, 1088
    [6] 陶新民, 徐晶, 杨立标, 等. 一种改进的粒子群和K均值混合聚类算法. 电子与信息学报, 2010, 32(1):92-97
    [7] 王勇, 唐靖, 饶勤菲, 等. 高效率的K-means最佳聚类数确定算法. 计算机应用, 2014, 34(5):1331-1335. doi:10.11772/j.issn.1001-9081.2014.05.1331
    [8] 周世兵, 徐振源, 唐旭清. 新的K-均值算法最佳聚类数确定方法. 计算机工程与应用, 2010, 46(16):27-31
    [9] 周天绮, 杨志民. 一种改进的K-means算法在城市通勤研究中的应用. 计算机应用与软件, 2019, 36(3):265-270. doi:10.3969/j.issn.1000-386x.2019.03.047
    [10] 刘旭, 陈云波, 施昆, 等. 结合Canopy-K-means算法和出租车轨迹数据的公交车站预测方法. 测绘通报, 2018, (11):63-68
    [11] 梁武, 苏燕. 基于改进互信息函数的文本分类方法研究. 科技通报, 2018, 34(11):188-191, 196
    [12] 姚志均, 刘俊涛, 周瑜, 等. 基于对称KL距离的相似性度量方法. 华中科技大学学报(自然科学版), 2011, 39(11):1-4, 38
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

徐文进,许瑶,解钦.基于互信息和散度改进K-Means在交通数据聚类中的应用.计算机系统应用,2020,29(1):171-175

Copy
Share
Article Metrics
  • Abstract:1842
  • PDF: 2701
  • HTML: 2590
  • Cited by: 0
History
  • Received:May 21,2019
  • Revised:July 04,2019
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the first990362Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063