Automatic Reading Method of Electric Energy Meter Based on YOLOv3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the continuous development of smart grid, the automatic reading system of electric energy meter based on digital image processing method is widely used. To improve the accuracy of automatic reading of traditional electric energy meter, a new method of automatic reading of electric energy meter based on YOLOv3 network is proposed. For the electric energy meter image, a counter positioning model based on the YOLOv3-Tiny network is constructed and trained, the trained target model is used to locate the counter target area, and the counter area is generated to achieve a counter image. For the counter image, a counter recognition model based on the YOLOv3 network is constructed and trained, and the trained model is used to identify the number of the counter target area. The electric energy meter data set published by the Federal University of Paraná Brazil was selected as the research object. The comparison experiment with YOLOv2-Tiny positioning model and CR-NET recognition model shows that the proposed method has higher positioning accuracy and recognition accuracy.

    Reference
    Related
    Cited by
Get Citation

龚安,张洋,唐永红.基于YOLOv3网络的电能表示数识别方法.计算机系统应用,2020,29(1):196-202

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 30,2019
  • Revised:June 28,2019
  • Adopted:
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063