Specular Highlight Removal Using Improved Pixel Clustering
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Specular highlight removal is a hot topic in the field of computer vision. Existing methods based on dichromatic reflection model,which separate diffuse and specular reflection components to remove specular highlights in a single image, tend to cause color distortion and texture loss. To relieve this problem, the pixel clustering algorithm is improved by using pixel intensity ratio to remove specular highlight, which can more accurately classify pixels and improve the image color distortion. Firstly, the difference between the original image and the single channel image of the minimum intensity value is calculated, to obtain the specular-free image. Secondly, the minimum and maximum diffuse chromaticity values for each pixel in the highlight area is estimated based on the specular-free image. Finally, the distribution pattern of the pixels in the highlight area are analyzed in a minimum-maximum chromaticity space and clustered by x-means method. The specular components of highlight area pixels can be easily separated by using the estimated intensity ratio of diffuse pixels, thereby getting a non-highlight image. Experimental results show that, compared with the existing method, the peak signal-to-noise ratio increases by 2% to 4% on average, and the image color distortion and texture loss are improved with better visual effects.

    Reference
    [1] Gevers T, Stokman H. Classifying color edges in video into shadow-geometry, highlight, or material transitions. IEEE Transactions on Multimedia, 2003, 5(2):237-243. doi:10.1109/TMM.2003.811620
    [2] Tominaga S. Surface identification using the dichromatic reflection model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(7):658-670. doi:10.1109/34.85656
    [3] Gevers T, Smeulders AWM. Color-based object recognition. Pattern Recognition, 1999, 32(3):453-464. doi:10.1016/S0031-3203(98)00036-3
    [4] Xing XH, Gu GH. Method of quickly recognizing vehicle plate based on pattern matching and characteristic dot matching. Optoelectronic Technology, 2003, 23(4):268-270
    [5] Fuhrmann S, Langguth F, Goesele M. MVE:A multi-view reconstruction environment. Proceedings of the Eurographics Workshop on Graphics and Cultural Heritage. Darmstadt, Germany. 2014. 11-18.
    [6] Shafer S A. Using color to separate reflection components. Color Research & Application, 1985, 10(4):210-218
    [7] Tan RT, Ikeuchi K. Separating reflection components of textured surfaces using a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2):178-193. doi:10.1109/TPAMI.2005.36
    [8] Shen HL, Zhang HG, Shao SJ, et al. Chromaticity-based separation of reflection components in a single image. Pattern Recognition, 2008, 41(8):2461-2469. doi:10.1016/j.patcog.2008.01.026
    [9] Shen HL, Cai QY. Simple and efficient method for specularity removal in an image. Applied Optics, 2009, 48(14):2711-2719. doi:10.1364/AO.48.002711
    [10] Shen HL, Zheng ZH. Real-time highlight removal using intensity ratio. Applied Optics, 2013, 52(19):4483-4493. doi:10.1364/AO.52.004483
    [11] Souza ACS, Macedo MCF, Nascimento VP, et al. Real-time high-quality specular highlight removal using efficient pixel clustering. SIBGRAPI. Parana, Brazil. 2018. 56-63.
    [12] Li C, Lin S, Zhou K, et al. Specular highlight removal in facial images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 2780-2789.
    [13] Yang QX, Wang SN, Ahuja N, et al. A uniform framework for estimating illumination chromaticity, correspondence, and specular reflection. IEEE Transactions on Image Processing, 2011, 20(1):53-63. doi:10.1109/TIP.2010.2055573
    [14] Ren WH, Tian JD, Tang YD. Specular reflection separation with color-lines constraint. IEEE Transactions on Image Processing, 2017, 26(5):2327-2337. doi:10.1109/TIP.2017.2675204
    [15] Yang QX, Tang JH, Ahuja N. Efficient and robust specular highlight removal. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6):1304-1311. doi:10.1109/TPAMI.2014.2360402
    [16] Wang SK, Yu CY, Sun YJ, et al. Specular reflection removal of ocean surface remote sensing images from UAVs. Multimedia Tools and Applications, 2018, 77(9):11363-11379. doi:10.1007/s11042-017-5551-7
    [17] Hartigan JA, Wong MA. A K-means clustering algorithm. Journal of the Royal Statistical Society:Series C (Applied Statistics), 1979, 28(1):100-108
    [18] Pelleg D, Moore A. X-means:Extending K-means with efficient estimation of the number of clusters. Proceedings of International Conference on Machine Learning. Stanford, CA, USA. 2000. 727-734.
    [19] Zhou K, Hou QM, Wang R, et al. Real-time KD-tree construction on graphics hardware. ACM Transactions on Graphics (TOG), 2008, 27(5):126
    [20] Kaehler A, Bradski G R. Learning OpenCV 3:Computer vision in C++ with the OpenCV library. Sebastopol:O'Reilly, 2016.
    Related
    Cited by
Get Citation

许丽,宋滢.高光去除的聚类算法改进.计算机系统应用,2020,29(1):209-214

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 04,2019
  • Revised:June 28,2019
  • Online: December 30,2019
  • Published: January 15,2020
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063