TFT-LCD Manufacturing Scheduling Method Based on Improved Cuckoo Search Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Considering the green scheduling problem of TFT-LCD manufacturing cell stage based on improved cuckoo search algorithm, a mathematical model was established aiming at minimization of the maximum completion time and total carbon emissions. By using three-stage coding based on machine selection, speed selection and process selection and using an improved cuckoo search algorithm with dynamic coefficients before step size factor, the Pareto optimal solution set is constructed by combining the dual championship and the dynamic elimination system. The validity of the model and algorithm is verified by simulating the actual production data of a workshop. The simulation results show that the improved cuckoo search algorithm can effectively reduce carbon emissions while guaranteeing the maximum completion time.

    Reference
    [1] Garetti M, Taisch M. Sustainable manufacturing:Trends and research challenges. Production Planning&Control, 2012, 23(2-3):83-104
    [2] Lee ZY, Pai CC. Operation analysis and performance assessment for TFT-LCD manufacturers using improved DEA. Expert Systems with Applications, 2011, 38(4):4014-4024.[doi:10.1016/j.eswa.2010.09.063
    [3] 程星华,李强. TFT-LCD工厂能源消费结构及用能特点分析.液晶与显示, 2014, 29(5):856-863
    [4] Choi HS, Kim JS, Lee DH. Real-time scheduling for reentrant hybrid flow shops:A decision tree based mechanism and its application to a TFT-LCD line. Expert Systems with Applications, 2011, 38(4):3514-3521.[doi:10.1016/j.eswa.2010.08.139
    [5] Hong TY, Chien CF, Wang HK, et al. A two-phase decoding genetic algorithm for TFT-LCD array photolithography stage scheduling problem with constrained waiting time. Computers&Industrial Engineering, 2018, 125:200-211
    [6] Lin JT, Wang FK, Peng CC. Lot release times and dispatching rule for a TFT-LCD cell process. Robotics and Computer-Integrated Manufacturing, 2008, 24(2):228-238.[doi:10.1016/j.rcim.2006.10.006
    [7] Wu HH, Chen CP, Tsai CH, et al. Simulation and scheduling implementation study of TFT-LCD cell plants using Drum-Buffer-Rope system. Expert Systems with Applications, 2010, 37(12):8127-8133.[doi:10.1016/j.eswa.2010.05.075
    [8] 徐峰,步丰林.改进遗传算法求解混合流水装配作业调度问题.微型电脑应用, 2013, 29(9):58-61.[doi:10.3969/j.issn.1007-757X.2013.09.017
    [9] 吴思思,叶春明,李瑞婷.具有学习退化效应的TFT-LCD面板成盒多目标调度问题研究.上海理工大学学报, 2018, 40(3):238-248
    [10] Chou CW, Chien CF, Gen M. A multiobjective hybrid genetic algorithm for TFT-LCD module assembly scheduling. IEEE Transactions on Automation Science and Engineering, 2014, 11(3):692-705.[doi:10.1109/TASE.2014.2316193
    [11] Gahm C, Denz F, Dirr M, et al. Energy-efficient scheduling in manufacturing companies:A review and research framework. European Journal of Operational Research, 2016, 248(3):744-757.[doi:10.1016/j.ejor.2015.07.017
    [12] Cataldo A, Perizzato A, Scattolini R. Production scheduling of parallel machines with model predictive control. Control Engineering Practice, 2015, 42:28-40.[doi:10.1016/j.conengprac.2015.05.007
    [13] Wang YC, Wang MJ, Lin SC. Selection of cutting conditions for power constrained parallel machine scheduling. Robotics and Computer-Integrated Manufacturing, 2017, 43:105-110.[doi:10.1016/j.rcim.2015.10.010
    [14] Ji M, Wang JY, Lee WC. Minimizing resource consumption on uniform parallel machines with a bound on makespan. Computers&Operations Research, 2013, 40(12):2970-2974
    [15] Li K, Zhang X, Leung JYT, et al. Parallel machine scheduling problems in green manufacturing industry. Journal of Manufacturing Systems, 2016, 38:98-106.[doi:10.1016/j.jmsy.2015.11.006
    [16] Ding JY, Song SJ, Wu C. Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 2016, 248(3):758-771.[doi:10.1016/j.ejor.2015.05.019
    [17] Zhai YX, Biel K, Zhao F, et al. Dynamic scheduling of a flow shop with on-site wind generation for energy cost reduction under real time electricity pricing. CIRP Annals, 2017, 66(1):41-44.[doi:10.1016/j.cirp.2017.04.099
    [18] Huang RH, Yu SC. Two-stage multiprocessor flow shop scheduling with deteriorating maintenance in cleaner production. Journal of Cleaner Production, 2016, 135:276-283.[doi:10.1016/j.jclepro.2016.06.109
    [19] Lu C, Gao L, Li XY, et al. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. Journal of Cleaner Production, 2017, 144:228-238.[doi:10.1016/j.jclepro.2017.01.011
    [20] 赵敏,张卫国,余立中.上海市能源消费碳排放分析.环境科学研究, 2009, 22(8):984-989
    [21] Yang XS, Deb S. Cuckoo search via Lévy flights. Proceedings of World Congress on Nature&Biologically Inspired Computing. Coimbatore, India. 2009. 210-214.
    [22] Brown CT, Liebovitch LS, Glendon R. Levy flights in Dobe Ju/'hoansi foraging patterns. Human Ecology, 2007, 35(1):129-138.[doi:10.1007/s10745-006-9083-4
    [23] Yang XS, Deb S. Cuckoo search:Recent advances and applications. Neural Computing and Applications, 2014, 24(1):169-174.[doi:10.1007/s00521-013-1367-1
    [24] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.[doi:10.1109/4235.996017
    Related
    Cited by
Get Citation

刘庭宇,叶春明.基于改进布谷鸟搜索算法的TFT-LCD制造调度方法.计算机系统应用,2020,29(3):47-54

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 29,2019
  • Revised:June 24,2019
  • Online: March 02,2020
  • Published: March 15,2020
Article QR Code
You are the first990366Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063