Hierarchical Representation Approach to Fast Detection of Malicious Webpages
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, the web content detection mainly focuses on how to extract features from HTML document through semantic analysis or emulation execution, while it is undesirable, because it significantly complicates implementation which requires high computational overhead, and opens up an attack surface within the detector. A deep learning approach to detect malicious web pages is proposed. Firstly, we take advantage of the non-complex regular expression to extract tokens from static HTML document, then capture locality representation at multiple hierarchical spatial scales over the document with neural network model, by which the mode can quickly find tiny fragments of malicious code in any length of web pages. The experimental results show that this approach achieves a detection rate of 96.4% at a false positive rate of 0.1%, much better than the baseline and simplified model at the classification accuracy. The speed and accuracy of proposed approach makes it appropriate for deployment to endpoints, firewalls and web proxies.

    Reference
    Related
    Cited by
Get Citation

袁梁,林金芳.基于文档分层表示的恶意网页快速检测方法.计算机系统应用,2019,28(12):226-231

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 25,2019
  • Revised:May 21,2019
  • Adopted:
  • Online: December 13,2019
  • Published: December 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063