Dynamic Gesture Recognition Method Based on Leap Motion
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    With the development of Virtual Reality (VR) technology and the increasing demand for human-computer interaction performance and experience, gesture recognition is one of the important technologies affecting the interaction in VR, and its accuracy needs to be improved. Aiming at the problem that the current gesture recognition method performs poorly in some similar gesture recognition, a multi-feature dynamic gesture recognition method is proposed. Firstly, this method uses Leap Motion to track the dynamic gestures to acquire data, then adds the displacement vector angle and the inflection point judgment in the feature extraction process, after that performs the training of the dynamic gesture Hidden Markov Model (HMM). Finally, the recognition is carried out according to the matching ratio of the gesture to be tested and the model. It is concluded from the experimental results that the multi-feature recognition method can improve the recognition rate of similar gestures.

    Reference
    [1] Sagayam KM, Hemanth DJ. Hand posture and gesture recognition techniques for virtual reality applications:A survey. Virtual Reality, 2017, 21(2):91-107.[doi:10.1007/s10055-016-0301-0
    [2] 张凤军, 戴国忠, 彭晓兰. 虚拟现实的人机交互综述. 中国科学:信息科学, 2016, 46(12):1711-1736
    [3] 田喜平, 赵红丹. 基于Kinect的动态孤立手势识别研究. 微电子学与计算机, 2017, 34(2):115-118
    [4] 张琪祥. 基于Leap Motion的手势识别研究及应用[硕士学位论文]. 北京:北京邮电大学, 2018.
    [5] Lu W, Tong Z, Chu JH. Dynamic hand gesture recognition with Leap Motion controller. IEEE Signal Processing Letters, 2016, 23(9):1188-1192.[doi:10.1109/LSP.2016.2590470
    [6] 黎珍. 基于Leap Motion交互技术的研究. 通讯世界, 2017, (7):297.[doi:10.3969/j.issn.1006-4222.2017.07.213
    [7] 黄俊. 基于Leap Motion的手势交互在虚拟场景中的研究[硕士学位论文]. 成都:西南交通大学, 2016.
    [8] Vennila G, Manikandan MSK, Suresh MN. Dynamic voice spammers detection using hidden Markov model for voice over internet protocol network. Computers & Security, 2018, 73:1-16
    [9] 林巧民, 齐柱柱. 基于HMM和ANN混合模型的语音情感识别研究. 计算机技术与发展, 2018, 28(10):74-78.[doi:10.3969/j.issn.1673-629X.2018.10.015
    [10] 郑敏嘉, 卢洵, 程鑫. 基于HMM模型的电力负荷预测模型研究. 机电工程技术, 2018, 47(11):170-173.[doi:10.3969/j.issn.1009-9492.2018.11.049
    [11] 曹凯, 于善义, 于少伟. 基于多隐马尔可夫模型的车辆机动行为识别与预测. 信息与控制, 2014, 43(4):506-512
    Related
    Cited by
Get Citation

高宇,何小海,吴晓红,王正勇,张豫堃.基于Leap Motion的动态手势识别方法.计算机系统应用,2019,28(11):208-212

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 25,2019
  • Revised:May 21,2019
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the first992316Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063