Particle Swarm Optimization with Dynamic Adjustment of Inertia Weight
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to optimize the current Particle Swarm Optimization (PSO) algorithm, which is easy to fall into local optimum, slow convergence and another faults, this study proposes an improved inertia weight parameter method to optimize the algorithm. Combining the operation of mutation operator in Differential Evolution (DE) algorithm to improve the self-adaptation of the algorithm and limit the speed and search space of the algorithm to prevent particles from jumping out of the prescribed search space. Choose the corresponding test function and compare the improved algorithm with the other two algorithms by using Matlab software. The results show that the improved algorithm has a certain improvement in the convergence speed and the stability of fitness value.

    Reference
    Related
    Cited by
Get Citation

吴静,罗杨.动态调整惯性权重的粒子群算法优化.计算机系统应用,2019,28(12):184-188

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 15,2019
  • Revised:May 16,2019
  • Adopted:
  • Online: December 13,2019
  • Published: December 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063