Stance Detection in Chinese Microblogs via Bert-Condition-CNN Model
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Stance detection task aims to automatically determine whether a Weibo text is in favor of the given target, against the given target, or neither. Mining the stance information about a given target is an emerging problem. Based on the success of deep learning in classifying, this study proposed a Bert-Condition-CNN model to predict the stance label. Firstly, noted that the given target may not be present in the Weibo text, so we extracted the topic phrases from Weibo corpus as the given target supplement. Then, we used Bert language model to accept the text representation vector and calculated a Condition matrix whose entries represent the relationship between Weibo text and topic phrases. Finally, a convolutional neural network was utilized to capture the stance features from Condition matrix. Experimental results on NLPCC2016 datasets demonstrate the model has achieved a sound effect of stance detection.

    Reference
    Related
    Cited by
Get Citation

王安君,黄凯凯,陆黎明.基于Bert-Condition-CNN的中文微博立场检测.计算机系统应用,2019,28(11):45-53

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 12,2019
  • Revised:May 08,2019
  • Adopted:
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063