Discrimination Method of Terrorism Audio Based on Transfer Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This article intercepts the horror audio clips from the network and movies to build terrorism audio dataset. However, the source of the horror audio is limited, whereas the convolutional neural network depends on a large amount of data. To this end, the transfer learning technology is performed in the discrimination of the terrorism audio. Firstly, pre-train the network by using the public TUT acoustic scenes dataset, and then retain the model weight and transfer the neural network to the discrimination of terrorism audio. Finally, add more layers after the fine-tune network to utilize more audio information, the structure of the added layers is similar to the residual network. The experimental results indicate that the average discriminant rate of the transfer learning method is 3.97% higher than that of the non-transfer learning method, which effectively solves the training problem caused by small audio dataset in the study of terrorism audio discrimination, and the average discriminant rate of the improved transfer learning network has increased by 1.01%, finally reaches the discriminant rate of 96.97%.

    Reference
    Related
    Cited by
Get Citation

胡鑫旭,周欣,何小海,熊淑华,王正勇.基于迁移学习的暴恐音频判别方法.计算机系统应用,2019,28(11):147-152

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 11,2019
  • Revised:May 08,2019
  • Adopted:
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063