Traffic Sign Detection Method Based on Clustering and Hough Transform
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [14]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The detection of traffic sign is the crucial technology of traffic sign recognition system. A method of traffic sign detection based on image color and shape is proposed. Firstly, the image is pre-processed by gray stretching and noise filtering, and then the color image is segmented by improved K-means clustering algorithm. Finally, the shape detection technology based on Hough transform is used to locate the special shape of traffic signs, so as to realize the detection of traffic signs. The experimental results show that the average accuracy of the detection results under various complex background conditions is 93.0%, which is better than other algorithms under the same conditions and has high real-time performance.

    Reference
    [1] Akatsuka H, Imai S. Road signposts recognition system. SAE Vehicle Highway Infrastructure:Safety Compatibility, 1987.
    [2] Vitabile S, Pollaccia G, Pilato G, et al. Road signs recognition using a dynamic pixel aggregation technique in the HSV color space. Proceedings 11th International Conference on Image Analysis and Processing. Palermo, Italy. 2001. 572-577.
    [3] Morse BS. Segmentation edge based Hough transform. Brigham Young University[Technical report], Provo, UT, USA. 2000.
    [4] Gavrila DM, Philomin V. Real-time object detection for "smart" vehicles. Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece. 1999. 87-93.
    [5] Barnes N, Loy G, Shaw D. The regular polygon detector. Pattern Recognition, 2010, 43(3):592-602.[doi:10.1016/j.patcog.2009.09.008
    [6] 段汕, 于莹莹, 陈龙, 等. 基于切线斜率变化统计的红色圆形交通标志牌检测. 中南民族大学学报(自然科学版), 2010, 29(2):75-79
    [7] Barnes N, Loy G. Real-time regular polygonal sign detection. In:Corke P, Sukkariah S, eds. Field and Service Robotics. Berlin Heidelberg:Springer, 2006. 55-66.
    [8] 刘成云, 常发亮, 陈振学. 基于感兴趣区域和HOG-MBLBP特征的交通标识检测. 电子与信息学报, 2016, 38(5):1092-1098
    [9] 张兴国, 刘晓磊, 李靖, 等. BP神经网络下的限速交通标志实时检测识别. 西安电子科技大学学报(自然科学版), 2018, 45(5):136-142.[doi:10.3969/j.issn.1001-2400.2018.05.022
    [10] 李小楠. 复杂自然环境下的交通标志检测算法研究[硕士学位论文]. 石家庄:河北师范大学, 2017.
    [11] 巨志勇, 李开亮, 毛颖颖. 基于K-means聚类与二次分水岭的果蔬图像分割方法. 软件导刊, 2018, 17(6):217-219, 223
    [12] 戴雪瑞, 袁雪, 乐国庆, 等. 复杂场景下基于颜色对和MSER的交通标志检测方法. 北京交通大学学报, 2018, 42(5):107-115.[doi:10.11860/j.issn.1673-0291.2018.05.015
    [13] 王权威. 自然环境下交通标志检测与识别技术研究[学位论文]. 天津:天津大学, 2016.
    [14] 林川, 潘胜辉, 谭光兴, 等. 基于聚类与链码技术的交通标志检测. 计算机测量与控制, 2011, 19(6):1341-1344
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

苗丹,卢伟,高娇娇,李哲.基于聚类与Hough变换的交通标志检测方法.计算机系统应用,2019,28(11):213-217

Copy
Share
Article Metrics
  • Abstract:1395
  • PDF: 2552
  • HTML: 1529
  • Cited by: 0
History
  • Received:April 11,2019
  • Revised:May 08,2019
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the first991216Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063