Hot Spot Defect Detection Based on Infrared Thermal Image and Faster RCNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Photovoltaic modules inevitably produce various defects in daily operation, and hot spot defects are one of them. The existing research mainly focuses on the defects of photovoltaic modules in the production process, and there is few research on the defect detection algorithms generated by PV modules in daily operation, and there are problems such as poor generalization ability and insufficient accuracy. Based on the original faster RCNN, this study combines image preprocessing, migration learning, improved feature extraction network model, and improved anchor frame selection scheme to obtain hot spot defect detection model. Experiments show that the average detection accuracy of the self-made test set using this model is 97.34%, which is 4.51% higher than the original faster RCNN.

    Reference
    Related
    Cited by
Get Citation

郭梦浩,徐红伟.基于Faster RCNN的红外热图像热斑缺陷检测研究.计算机系统应用,2019,28(11):265-270

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 07,2019
  • Revised:May 08,2019
  • Adopted:
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063