Application of Deep Feature Selection Network in Radar Signal Identification
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    About radar emitter signal identification research, the artificially extracted features have relatively physical characterization, but there are still redundant features and noise features. Through the deep neural network, the deeper expression of the signal can be obtained, but its characteristics are difficult to explain. Combining the physical characteristics of artificial features and the strong learning ability of deep learning, this study proposes to apply a deep feature selection network to radar signal recognition technology. DFS adds a sparse one-to-one layer between the input layer and the first hidden layer to obtain the corresponding weight value of each feature from the classification correlation metric, uses these weight values to enhance the input of sensitive features and weaken the input of redundant features, and improves classification accuracy. Firstly, the complexity features, Cscade Connection features of ridge-frequency, and information entropy features are extracted from the radar signals, and merged into the original feature set. The DFS is used for learning training to achieve the feature selection at the input level. The above approaches were used to identify the 5 different types of radar emitter signals, obtained good classification. The results verify the effectiveness of the approach.

    Reference
    Related
    Cited by
Get Citation

曾歆然,金炜东,黄颖坤,胡燕花.深度特征选择网络在雷达信号识别中的应用.计算机系统应用,2019,28(11):224-232

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 20,2019
  • Revised:April 17,2019
  • Adopted:
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063