Medical Image Fusion Algorithm Based on Non-Subsampled Shearlet Transform and Feature Synthesis
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the problem that the detailed texture is not clear enough for the fused medical image, this study proposes a new medical image fusion algorithm on the basis of non-subsampled shearlet transform (NSST) to fuse the multimodal medical image to enhance the detail structure extraction, improve fused image quality and provide a basis for medical diagnosis. First of all, the registered source image is decomposed by NSST to obtain a low-frequency sub-band and a series of high-frequency sub-band. Then, for the low-frequency sub-band coefficients, this study proposes a fusion method using sub-band selection between the regional average energy and regional standard deviation. For high-frequency sub-band coefficients, the fusion method is performed using the new sum of modified Laplacian (NSML). Afterwards, the fused low-frequency, high-frequency sub-band coefficients are inversely transformed by NSST to obtain a fused image. Finally, a large number of experiments were performed on grayscale and color medical multimodal images, and IE, SF, SD, and AG were selected to evaluate the fused images. The simulation results show that the proposed algorithmimprove subjective visual effect and objective evaluation. Compared with other algorithms, the average values of IE, SD, SF, and AG increased by 2.99%, 4.06%, 1.78% and 1.37%, respectively. The fused image contains more detailed texture information and better visual effect.

    Reference
    Related
    Cited by
Get Citation

朱文维,李俊峰.基于非下采样剪切波变换和特征合成的医学图像融合算法.计算机系统应用,2019,28(10):170-177

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 18,2019
  • Revised:April 17,2019
  • Adopted:
  • Online: October 15,2019
  • Published: October 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063