Single Image De-Raining Using Multi-Stream Detail Enhanced Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    For low-level computer vision tasks, image de-raining has always been a hot issue. However, due to the uneven density of rain lines in the image, it is a very challenging issue to remove rain from a single image. Attention to the target image often requires attention to two parts:the overall structure of the image and the details of the image. In this regard, a novel multi-stream feature fusion convolutional neural network algorithm is proposed. It presents superior performance through various network frameworks. The network algorithm uses three branch networks to extract complex multi-directional rain line features, concat features and combines with the original image to remove rain. The detail enhanced network can obtain high quality without rain. The de-raining performance under the synthesized dataset and the real rain dataset indicates that the proposed algorithm can preserve more details while removing the rain line than the existing deep learning-based rain removal algorithm, and it can keep the high quality of the picture.

    Reference
    Related
    Cited by
Get Citation

安鹤男,涂志伟,张昌林,李蔚,刘佳.单张图像去雨的多流细节加强网络.计算机系统应用,2019,28(11):202-207

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 27,2019
  • Revised:April 18,2019
  • Adopted:
  • Online: November 08,2019
  • Published: November 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063