Research on Semi-Automatic Generation Technology of Object Detection Datasets
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Object detection is widely used in the field of computer vision. In different occasions, we need to use different training set to train the model. However, manually generating label is very time consuming. This study proposed a semi-automatic method to generate labels for dataset, then automatically filter them according to the threshold set by image similarity, lastly retain the required images and corresponding labels as the final dataset. Experiments show that the method can both improve the speed and ensure accuracy rate of generating labels for dataset.

    Reference
    [1] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444.[doi:10.1038/nature14539
    [2] Girshick R. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile. 2015. 1440-1448.
    [3] Redmon J, Farhadi A. YOLOv3:An incremental improvement. Computer Vision and Pattern Recognition. arXiv:1804.02767, 2018.
    [4] Liu W, Anguelov D, Erhan D, et al. SSD:Single shot multiBox detector. European Conference on Computer Vision. Cham, Switzerland. 2016. 21-37.
    [5] Lowe DG. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2):91-110.[doi:10.1023/B:VISI.0000029664.99615.94
    [6] Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37(3):297-336.[doi:10.1023/A:1007614523901
    [7] Dalal N, Triggs B. Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA. 2005. 886-893.
    [8] Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1):51-59.[doi:10.1016/0031-3203(95)00067-4
    [9] Ng PC, Henikoff S. SIFT:Predicting amino acid changes that affect protein function. Nucleic Acids Research, 2003, 31(13):3812-3814.[doi:10.1093/nar/gkg509
    [10] 殷帅,胡越黎,刘思齐,等.基于YOLO网络的数据采集与标注.仪表技术, 2018,(12):22-25
    [11] 不用人工打标制作目标检测数据集的方法. https://blog.csdn.net/u011983997/article/details/80089418.[2018-04-26].
    [12] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [13] Chen XL, Fang H, Lin TY, et al. Microsoft COCO captions:Data collection and evaluation server. Computer Vision and Pattern Recognition. arXiv:1504.00325, 2015.
    [14] Deng J, Dong W, Socher R, et al. ImageNet:A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA. 2009. 248-255.
    [15] 王法强,张宏志,王鹏,等.计算机视觉中相似度学习方法的研究进展.智能计算机与应用, 2019,(1):149-152.[doi:10.3969/j.issn.2095-2163.2019.01.035
    [16] Lowe DG. Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision. Corfu, Greece. 1999. 20-27.
    [17] 黄嘉恒,李晓伟,陈本辉,等.基于哈希的图像相似度算法比较研究.大理大学学报, 2017, 2(12):32-37.[doi:10.3969/j.issn.2096-2266.2017.12.007
    [18] 尹玉梅,彭艺,祁俊辉,等.基于双重Hash的图像相似检索算法研究.信息通信技术, 2019,(1):33-38
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

孙晓璇,张磊,李健.目标检测数据集半自动生成技术研究.计算机系统应用,2019,28(10):8-14

Copy
Share
Article Metrics
  • Abstract:1450
  • PDF: 3014
  • HTML: 1507
  • Cited by: 0
History
  • Received:March 25,2019
  • Revised:April 18,2019
  • Online: October 15,2019
  • Published: October 15,2019
Article QR Code
You are the first992102Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063