Chinese Text Proofreading Method Based on Neural Network and Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Chinese text proofreading is one of the key tasks in Chinese natural language processing, and manual proofreading is difficult to meet the data volume requirement of daily work, and the text proofreading method based on statistics can not deal with semantic errors flexibly. Aiming at the above problems, a Chinese text proofreading method based on neural network and attention mechanism is proposed. The bidirectional Gated Recurrent Unity neural network layer is used to obtain text information and feature extraction, and the ability of attention mechanism layer to enhance the semantic logic relation between words is introduced. The model is implemented under the framework of deep learning based on Keras. Experimental results show that this method can proofread text with semantic errors.

    Reference
    Related
    Cited by
Get Citation

郝亚男,乔钢柱,谭瑛.基于神经网络与注意力机制的中文文本校对方法.计算机系统应用,2019,28(10):190-195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 20,2019
  • Revised:April 17,2019
  • Adopted:
  • Online: October 15,2019
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063