Surface Reconstruction Algorithm of Medical Data Based on Improved Total Convolution Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to realize the rapid detection and classification of medical data, the surface reconstruction design of medical data needs to be carried out. A surface reconstruction algorithm of medical data based on improved total convolution neural network is proposed. The big data sampling of medical data was carried out by using radio frequency identification technology, the medical data collected by RFID was processed by information fusion, and the correlation statistical characteristics of medical data were extracted by multiple regression analysis. According to the characteristics of medical data, matching filter detector is used for redundant filtering, and phase space reconstruction technology is used to reconstruct medical data after purification. In order to realize the surface reconstruction and automatic recognition of medical data, an improved total convolution neural network classifier is used to classify and recognize the reconstructed data. The simulation results show that the proposed method has a good effect on the redundant feature processing of medical data. The accuracy of data classification is more than 90%, and the error of medical data reconstruction is smaller and the time consuming is less.

    Reference
    Related
    Cited by
Get Citation

李晓峰,李东.基于改进全卷积神经网络的医疗数据表面重建算法.计算机系统应用,2019,28(10):157-163

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 17,2019
  • Revised:April 17,2019
  • Adopted:
  • Online: October 15,2019
  • Published: October 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063