Short-Term Traffic Flow Forecasting Model Based on LSTM-BP
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In order to alleviate the increasingly serious traffic congestion problem, realize intelligent traffic control, provide accurate real-time traffic flow prediction data for traffic flow induction and traffic travel, an LSTM-BP combined model algorithm based on long-short-time memory neural network (LSTM) and BP neural network is designed. Mining the characteristic factors of known traffic flow data, establishing the framework of time series prediction model, and using Matlab to complete the simulation from the data processing to the model simulation to realize the accurate prediction of short-term traffic flow based on LSTM-BP. Compared with the three prediction network models of LSTM\BP\WNN, the results show that the time series predicted by LSTM-BP has higher accuracy and stability. The construction of the model can provide basis and reference for the prediction of traffic distribution, the division of traffic modes, and the distribution of real-time traffic flow.

    Reference
    Related
    Cited by
Get Citation

李明明,雷菊阳,赵从健.基于LSTM-BP组合模型的短时交通流预测.计算机系统应用,2019,28(10):152-156

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 14,2019
  • Revised:April 04,2019
  • Online: October 15,2019
  • Published: October 15,2019
Article QR Code
You are the first992102Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063