Industrial Robots Sorting System Based on Improved Faster RCNN
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traditional sorting operation can not be adjusted with the change of working environment. In view of this shortcoming, a sorting robot is researched based on machine vision. By introducing image processing and feature engineering technology into the visual module, the sorting system can be adjusted in time. Unlike these methods, this research is based on the industrial sorting system in the laboratory and applies the deep learning method to it. By introducing faster RCNN detection algorithm into visual module and improving of Region Proposal Network (RPN), the detection process of faster RCNN model is accelerated, so that the system meets the real-time requirements of industry. faster RCNN, as an end-to-end method, can automatically generate more expressive features for input images and extract corresponding features for corresponding targets. This avoids the manual design features. Its automatic feature generation ability makes it suitable for various scenarios, which improves the environmental adaptability of industrial sorting robots.

    Reference
    Related
    Cited by
Get Citation

孙雄峰,林浒,王诗宇,郑飂默.基于改进Faster RCNN的工业机器人分拣系统.计算机系统应用,2019,28(9):258-263

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 06,2019
  • Revised:April 02,2019
  • Adopted:
  • Online: September 09,2019
  • Published: September 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063