Two-Stage Data Fusion Model and Algorithm Based on Environmental Monitoring
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    The data collected by multi-source sensors not only have a lot of redundancy, but also affect the final monitoring results. In order to improve the accuracy of monitoring, this study proposes a two-level data fusion model and algorithm for grassland environment monitoring. In the first-level data fusion, the adaptive weighted averaging method is used to fuse the similar sensors in each region, and then the BP neural network is used to train and fuse the heterogeneous sensors in the region, thus a preliminary judgment on the environmental conditions of each region is obtained. Because of the uncertainty of the fusion result by BP neural network, the secondary fusion uses DES evidence theory to analyze the primary fusion result and get the decision-making judgment of grassland environment. Finally, the validity and analysis of the model and algorithm are carried out. The experimental results show that the proposed method can accurately monitor the grassland environment. At the same time, it provides some valuable guidance and decision-making basis for the efficient management and scientific conservation of grassland environment.

    Reference
    [1] 孙玉文.基于无线传感器网络的农田环境监测系统研究与实现[博士学位论文].南京:南京农业大学, 2013.
    [2] 刘卫萍,王宁,周晓磊,等.数据融合技术在环境监测领域的应用.计算机系统应用, 2016, 25(6):88-93.[doi:10.15888/j.cnki.csa.005202
    [3] 余修武,范飞生,周利兴,等.无线传感器网络自适应预测加权数据融合算法.传感技术学报, 2017, 30(5):772-776.[doi:10.3969/j.issn.1004-1699.2017.05.023
    [4] 潘泉,程咏梅,梁彦,等.多源信息融合理论及应用.北京:清华大学出版社, 2013.
    [5] 彭冬亮,文成林,薛安克.多传感器多源信息融合理论及应用.北京:科学出版社, 2010.
    [6] 李洪伟,刘兆东,闵远胜,等.多源数据融合方法研究.核动力工程, 2018, 39(3):77-80
    [7] 范时平,何超杰.基于NARX神经网络的分簇数据融合算法.计算机工程与设计, 2018, 39(3):938-942
    [8] 张明阳,沈明玉.基于WSN的数据融合在水质监测中的研究.计算机工程与应用, 2014, 50(23):234-238, 260.[doi:10.3778/j.issn.1002-8331.1301-0123
    [9] 谭德坤,付雪峰,赵嘉,等.基于异常数据驱动的WSN簇内数据融合方法.传感技术学报, 2017, 30(2):306-312.[doi:10.3969/j.issn.1004-1699.2017.02.024
    [10] 邓振文,孙启湲,贾云伟,等.可应用于气体泄漏源搜寻的融合算法.计算机科学, 2016, 43(8):212-215.[doi:10.11896/j.issn.1002-137X.2016.08.043
    [11] Jing GL, Du WT, Guo YY. Studies on prediction of separation percent in electrodialysis process via BP neural networks and improved BP algorithms. Desalination, 2012, 291:78-93.[doi:10.1016/j.desal.2012.02.002
    [12] 章巍.基于D-S证据理论的数据融合方法设计与实现[硕士学位论文].北京:北京邮电大学, 2018.
    [13] Xiao FY. A novel evidence theory and fuzzy preference approach-based multi-sensor data fusion technique for fault diagnosis. Sensors, 2017, 17(11):2504.[doi:10.3390/s17112504
    [14] Zhu PY, Xiong WL, Qin NN, et al. D-S theory based on an improved PSO for data fusion. Journal of Networks, 2012, 7(2):370-376
    [15] 高杨,沈重,张永辉.基于多传感器数据融合技术的臭氧监测系统设计.传感器与微系统, 2014, 33(5):66-68, 72.[doi:10.3969/j.issn.1000-9787.2014.05.020
    Comments
    Comments
    分享到微博
    Submit
Get Citation

马占飞,金溢,江凤月,刘保卫.基于环境监测的两级数据融合模型与算法.计算机系统应用,2019,28(10):112-119

Copy
Share
Article Metrics
  • Abstract:1903
  • PDF: 2818
  • HTML: 1757
  • Cited by: 0
History
  • Received:March 04,2019
  • Revised:March 29,2019
  • Online: October 15,2019
  • Published: October 15,2019
Article QR Code
You are the first990593Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063