Research on Digital Mounting Method of Slit Lamp Rotating Drum
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    While installation of the slit lamp drum, there are some problems such as uncertainty in the evaluation of the clarity of the drum image by the human eye. In order to solve these problems, a digital correction method based on the definition evaluation algorithm is proposed to improve the drum quality. By studying the current mainstream image sharpness evaluation algorithm, several algorithms that are in good agreement with the subjective evaluation are selected, and some appropriate preprocessing method are used to process the image. Finally, the program is written to test the drum image. Three sets of experiments are designed to simulate the focal length change of the camera, the change of drum magnification, and the influence of illumination variation on the algorithm on the production line. The calculation results are compared and analyzed from four aspects: unimodality, unbiasedness, sensitivity, and real-time. The results show that the selected algorithm can accurately evaluate the drum image under different magnifications and different illuminations, and can meet the real-time requirements of the production line.

    Reference
    [1] Li YK, Yu TS, Li BX. Simultaneous event localization and recognition in surveillance video. 201815th IEEE International Conference on Advanced Video and Signal Based Surveillance. Auckland, New Zealand. 2018. 1-6.
    [2] Chandler DM. Seven challenges in image quality assessment:Past, present, and future research. ISRN Signal Processing, 2013, 2013:905685
    [3] 褚江,陈强,杨曦晨.全参考图像质量评价综述.计算机应用研究, 2014, 31(1):13-22.[doi:10.3969/j.issn.1001-3695.2014.01.003
    [4] 赵旦峰,王博,李明.基于空域特征的无参考图像质量评价算法.计算机工程与应用, 2016, 52(12):216-220.[doi:10.3778/j.issn.1002-8331.1409-0232
    [5] Chen LL, Han M, Wan HL. The fast iris image clarity ev-aluation based on Brenner. 20132nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation. Toronto, ON, Canada. 2013.
    [6] 李祚林,李晓辉,马灵玲,等.面向无参考图像的清晰度评价方法研究.遥感技术与应用, 2011, 26(2):239-246
    [7] 王健,陈洪斌,周国忠,等.改进的Brenner图像清晰度评价算法.光子学报, 2012, 41(7):855-858
    [8] Redondo R, Bueno G, Valdiviezo JC, et al. Autofocus evaluation for brightfield microscopy pathology. Journal of Biomedical Optics, 2012, 17(3):036008.[doi:10.1117/1.JBO.17.3.036008
    [9] 陈亮,李卫军,谌琛,等.数字图像清晰度评价函数的通用评价能力研究.计算机工程与应用, 2013, 49(14):152-155, 235.[doi:10.3778/j.issn.1002-8331.1202-0442
    [10] 朱晨旭. DNA芯片电泳检测中的自动对焦和定位研究[硕士学位论文].南京:东南大学, 2015.
    [11] 崔作龙,徐长松.图像清晰度的量化测量探究.实验技术与管理, 2012, 29(5):49-51.[doi:10.3969/j.issn.1002-4956.2012.05.014
    [12] Trent1985.无参考图像清晰度评价. https://blog.csdn.net/Trent1985/article/details/50904173,[2016-03-16] .
    [13] 王昕,刘畅.基于提升小波变换的图像清晰度评价算法.东北师大学报:自然科学版, 2009, 41(4):52-57
    [14] 潘雪娟,朱尤攀,浦恩昌,等.基于熵的自动聚焦图像清晰度评价函数仿真分析.红外技术, 2016, 38(10):838-844.[doi:10.11846/j.issn.1001_8891.201610005
    [15] 徐贵力,刘小霞,田裕鹏,等.一种图像清晰度评价方法.红外与激光工程, 2009, 38(1):180-184.[doi:10.3969/j.issn.1007-2276.2009.01.039
    [16] 王鸿南,钟文,汪静,等.图像清晰度评价方法研究.中国图象图形学报, 2004, 9(7):828-831.[doi:10.3969/j.issn.1006-8961.2004.07.011
    [17] 魏红生,何建农.基于点锐度法和小波变换的图像融合方法.计算机工程, 2010, 36(23):204-206.[doi:10.3969/j.issn.1000-3428.2010.23.068
    [18] 袁珂,徐蔚鸿.基于图像清晰度评价的摄像头辅助调焦系统.光电工程, 2006, 33(1):141-144.[doi:10.3969/j.issn.1003-501X.2006.01.034
    [19] 范媛媛.光测设备电视图像无参考质量评价方法的研究[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所), 2011.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

江俊佳,沈建新,韩鹏.裂隙灯转鼓数字化装校方法研究.计算机系统应用,2019,28(9):232-238

Copy
Share
Article Metrics
  • Abstract:1190
  • PDF: 1930
  • HTML: 1206
  • Cited by: 0
History
  • Received:March 01,2019
  • Revised:March 29,2019
  • Online: September 09,2019
  • Published: September 15,2019
Article QR Code
You are the first991206Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063