Application of GA-BP Algorithm Based on Hadoop in Precipitation Forecast
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at how to dig out useful knowledge from the massive meteorological data and improve the accuracy of meteorological forecast, this paper proposed a weather forecast method based on the genetic neural network algorithm on Hadoop platform. The method combined genetic algorithm with neural network algorithm, which could avoid the problem of local optimization in traditional algorithm. Then, the genetic neural network forecasting model is established, and the daily data of the ground climate from 1951 to 2006 of 13 stations in Tianjin is used as experimental data. Finally, the experiment is performed taking the rainfall level as decision attribute, and the results show that the method proposed in this paper can get better prediction accuracy for all rainfall level than traditional neural network algorithm. It has the highest prediction precision for the rainfall level R0 and reaches 87%, which can not only effectively deal with mass meteorological data, but also has high prediction precision and good scalability, it proposes a new way of thinking and method for weather forecast.

    Reference
    Related
    Cited by
Get Citation

勾志竟,任建玲,徐梅,王敏.基于Hadoop的GA-BP算法在降水预测中的应用.计算机系统应用,2019,28(9):140-146

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 10,2019
  • Revised:April 04,2019
  • Adopted:
  • Online: September 09,2019
  • Published: September 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063