Hybrid Prediction Model for Parking Occupancy Based on Non-Stationary Stochastic Process and Long Short-Term Memory Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    It is popular to develop the city-wide Parking Guidance System (PGS) in China nowadays, in order to alleviate the parking difficulties arising in large cities. Prediction on parking occupancy is the essential intelligent technology to help vehicles find the proper parking lot efficiently in PGS. And the known prediction methods have to be powered by real-time data, without which would cause error accumulation and significant inaccuracies. In the early stage of PGS deployment, however, it is very hard to collect the real-time data from the parking lots all over the city. Therefore, this study takes the historical data of non-stationary parking spaces with periodic characteristics as the research object. Firstly, statistical analysis of parking spaces is carried out according to the central limit theorem and Law of Large Numbers. Then, we propose a method named SAL (non-stationary Stochastic And Long short-term memory) combined with LSTM (Long Short-Term Memory), to predict the parking occupancy at the given time, based on digging the history data. Experimental data prove that compared with using LSTM and Lyapunov exponent method, SAL has lower computational complexity, more accurate prediction, and effectively solves the problem of error accumulation caused by multi-step long-term prediction without real-time data.

    Reference
    Related
    Cited by
Get Citation

向荣,房祥彦.基于随机非平稳和长短时记忆网络的泊位混合预测.计算机系统应用,2019,28(8):210-216

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 20,2019
  • Revised:March 14,2019
  • Adopted:
  • Online: August 14,2019
  • Published: August 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063