Stock Price Prediction Based on Multiple-Factor and Multi-Variable Long Short Term Memory
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [18]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In recent years, deep learning methods have been widely used in the financial field, especially promoting the development of stock price prediction. Aiming at the problem of poor accuracy and robustness of univariate Long Short Term Memory (LSTM) network in general stock price prediction, this paper introduces the idea of multiple-factor model in quantitative stock option strategy in the field of economics into stock price prediction, calculates the multiple-factor of stock and takes it as the input feature for the prediction model. At the same time, in order to make the model accept the multiple-factor input, a multi-variable LSTM model for stock price prediction is produced on the basis of the univariate LSTM model. The experiment results show that, with the introduction of multiple-factor model, it not only improves the accuracy of stock price prediction, but also brings better model robustness to some extent.

    Reference
    [1] 李想. 基于XGBoost算法的多因子量化选股方案策划[硕士学位论文]. 上海:上海师范大学, 2017.
    [2] Du B, Zhu HL, Zhao JD. Optimal execution in high-frequency trading with Bayesian learning. Physica A:Statistical Mechanics and its Applications, 2016, 461:767-777.[doi:10.1016/j.physa.2016.06.021
    [3] Tsantekidis A, Passalis N, Tefas A, et al. Forecasting stock prices from the limit order book using convolutional neural networks. Proceedings of the 19th Conference on Business Informatics(CBI). Thessaloniki, Greece. 2017. 7-12.
    [4] Bao W, Yue J, Rao YL. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS One, 2017, 12(7):e0180944.[doi:10.1371/journal.pone.0180944
    [5] 丁鹏. 量化投资:策略与技术. 北京:电子工业出版社, 2012.
    [6] Fama EF, French KR. The capital asset pricing model:Theory and evidence. Journal of Economic Perspectives, 2004, 18(3):25-46.[doi:10.1257/0895330042162430
    [7] Artzner P, Delbaen F, Eber JM, et al. Coherent measures of risk. Mathematical Finance, 1999, 9(3):203-228.[doi:10.1111/mafi.1999.9.issue-3
    [8] Tofallis C. Investment volatility:A critique of standard beta estimation and a simple way forward. European Journal of Operational Research, 2008, 187(3):1358-1367.[doi:10.1016/j.ejor.2006.09.018
    [9] Petkova R. Do the fama-french factors proxy for innovations in predictive variables? Journal of Finance, 2006, 61(2):581-612.[doi:10.1111/j.1540-6261.2006.00849.x
    [10] Fama EF, French KR. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 1993, 33(1):3-56.[doi:10.1016/0304-405X(93)90023-5
    [11] 孙娇. 多因子量化投资策略及实证检验[硕士学位论文]. 南京:南京大学, 2016.
    [12] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8):1735-1780.[doi:10.1162/neco.1997.9.8.1735
    [13] Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323(6088):533-536.[doi:10.1038/323533a0
    [14] Gers FA, Schmidhuber J, Cummins F. Learning to forget:Continual prediction with LSTM. Neural Computation, 2000, 12(10):2451-2471.[doi:10.1162/089976600300015015
    [15] 于长秋. 中国的股票价格波动及货币政策反应. 中央财经大学学报, 2006, (3):45-49.[doi:10.3969/j.issn.1000-1549.2006.03.009
    [16] Winters PR. Forecasting sales by exponentially weighted moving averages. Management Science, 1960, 6(3):324-342.[doi:10.1287/mnsc.6.3.324
    [17] Kingma DP, Ba J. Adam:A method for stochastic optimization. Proceedings of the 3rd International Conference for Learning Representations. San Diego, CA, USA. 2014.
    [18] Hyndman RJ, Koehler AB. Another look at measures of forecast accuracy. International Journal of Forecasting, 2006, 22(4):679-688.[doi:10.1016/j.ijforecast.2006.03.001
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

裴大卫,朱明.基于多因子与多变量长短期记忆网络的股票价格预测.计算机系统应用,2019,28(8):30-38

Copy
Share
Article Metrics
  • Abstract:2738
  • PDF: 4621
  • HTML: 1604
  • Cited by: 0
History
  • Received:February 02,2019
  • Revised:March 01,2019
  • Online: August 14,2019
  • Published: August 15,2019
Article QR Code
You are the first992297Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063