Improved Prototype Selection Algorithm Based on CURE Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Since the traditional K-nearest neighbor classifier possesses large time and space complexity for larger-scale data sets, prototype selection is an effective processed method which selects representative prototypes (instances) from the original data set for K-nearest neighbor classifier without reducing the classification accuracy. At present, there exist many prototype selection methods. In this paper, based on the existing CURE algorithm, which is difficult to determine the noise points and has bad dispersed of representative points, the shared neighbor density metric is presented to delete noise points and the maximum and minimum distances are employed to obtain scattered representative points, which generates a novel prototype selection methods PSCURE (improved Prototype Selection algorithm based on CURE algorithm). Some numerical experiments are further conducted to show the performance of the proposed prototype selection algorithm compared with other related prototype selection algorithms. The experimental results show that the proposed algorithm not only can select fewer prototypes but also can achieve higher classifier accuracy for almost all the data sets.

    Reference
    Related
    Cited by
Get Citation

孙元元,张德生,张晓.基于CURE聚类算法改进的原型选择算法.计算机系统应用,2019,28(8):162-169

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 23,2019
  • Revised:February 26,2019
  • Adopted:
  • Online: August 14,2019
  • Published: August 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063