Classification Algorithm for Imbalanced Data Set
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Imbalanced dataset tends to be biased towards "majority" when classifying, and samples generated by traditional over-sampling cannot well express the distribution characteristics of the original dataset. The improved variational autoencoders combine with data preprocessing method, generate samples by the generator of variational autoencoders trained by the minority class samples to balance the training data set, solve the overfitting problem caused by imbalanced dataset of traditional sampling. Experiments are carried out on four commonly used UCI datasets, the results demonstrate that the proposed method shows better classification performance in F_measure and G_mean with high accuracy.

    Reference
    Related
    Cited by
Get Citation

蒋宗礼,史倩月.面向不平衡数据的分类算法.计算机系统应用,2019,28(8):120-128

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 08,2019
  • Revised:February 03,2019
  • Online: August 14,2019
  • Published: August 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063