Dense Reconstruction Method Based on Improved PMVS and Pixel Interpolation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The Patch-based Multi-View Stereopsis (PMVS) dense reconstruction method can automatically ignore external points and obstacle points. Compared with other 3D dense reconstruction algorithms, the algorithm is more accurate, simple, and efficient. However, holes appear in areas with sparse textures, and existing candidate points selection strategies may cause edge defects and local detail distortion. Aiming to solve these problems, this study proposes a method of pixel interpolation feature point selection based on Scale Invariant Feature Transform (SIFT), which increases the feature points of texture sparse regions and makes the feature points be evenly distributed. A more reasonable candidate point selection strategy is proposed to reduce false matching. Experiments show that the proposed method can not only ensure the reconstruction effect of sparse texture regions, but also effectively eliminate mismatched points and improve reconstruction accuracy.

    Reference
    Related
    Cited by
Get Citation

隗娜,郭向坤,董志勇,张兆伟.基于像素插值的改进PMVS稠密重建方法.计算机系统应用,2019,28(7):157-161

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 07,2019
  • Revised:February 03,2019
  • Adopted:
  • Online: July 05,2019
  • Published: July 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063