Hybrid Feature Selection Algorithm for Fusion Sequence Backward Selection and Support Vector Machine
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Dimensional disaster is a common problem in machine learning tasks. The feature selection algorithm can select the optimal feature subset from the original data set and reduce the feature dimension. A hybrid feature selection algorithm is proposed. Firstly, the chi-square test and filtering method are used to select the important feature subsets and normalize scale, and then SBS-SVM wrapped by SBS and SVM. The algorithm selects the optimal feature subset to maximize the classification performance and effectively reduce the number of features. In the experiment, the SBS-SVM in the parcel stage and the other two algorithms are tested on three classical data sets. The results show that the SBS-SVM algorithm has better performance in classification performance and generalization ability.

    Reference
    Related
    Cited by
Get Citation

吴清寿,刘长勇,林丽惠.融合序列后向选择与支持向量机的混合式特征选择算法.计算机系统应用,2019,28(7):174-179

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 26,2018
  • Revised:November 19,2018
  • Adopted:
  • Online: July 05,2019
  • Published: July 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063