Research and Improvement of C4.5 Algorithm in Decision Tree Classification Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    C4.5 algorithm is a classical algorithm used to generate decision tree. Although it has strong noise processing ability, the classification accuracy of C4.5 algorithm decreases obviously when the missing rate of attribute value is high, and the algorithm needs to scan many times when constructing decision tree. This paper presents an improved classification algorithm for sorting data sets and calling logarithms frequently. A method based on naive Bayesian theorem is used to deal with the vacant attribute value and improve the classification accuracy. By optimizing and reducing the calculation formula, the improved formula uses four mixed operations to replace the original logarithmic operation, thus reducing the running time of constructing the decision tree. In order to verify the performance of the algorithm, five data sets in UCI database are tested. The experimental results show that the improved algorithm greatly improves the running efficiency.

    Reference
    Related
    Cited by
Get Citation

韩存鸽,叶球孙.决策树分类算法中C4.5算法的研究与改进.计算机系统应用,2019,28(6):198-202

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 23,2018
  • Revised:January 18,2019
  • Adopted:
  • Online: May 28,2019
  • Published: June 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063