Optimal Recommendation Algorithm Based on User Clustering and Project Partition
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The traditional collaborative filtering recommendation algorithm does not fully consider the impact of user attributes and item classification on similarity calculation, which results in data sparsity and low recommendation accuracy. This study proposes a collaborative filtering recommendation algorithm based on user attribute clustering and item partitioning. The algorithm fully considers the similarity calculation which has an important impact on recommendation accuracy. Firstly, users are clustered by user identity attributes using clustering algorithm, and then the items are classified. In the similarity calculation, category similarity is added. Considering the number of users scored jointly, comprehensive similarity is calculated by weighted coefficient. Finally, combined with average similarity, the nearest neighbor is synthesized by threshold method. The experimental results show that the proposed algorithm can effectively improve the recommendation accuracy and provide more accurate items for users.

    Reference
    [1] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述. 计算机学报, 2018, 41(7):1619-1647
    [2] Frémal S, Lecron F. Weighting strategies for a recommender system using item clustering based on genres. Expert Systems with Applications, 2017, 77(7):105-113
    [3] 黎新志, 高茂庭. 基于用户分类的隐含因子模型研究. 计算机应用研究, 2018, 35(8):2289-2292.[doi:10.3969/j.issn.1001-3695.2018.08.012
    [4] 王志虎, 黄曼莹. 基于用户历史行为的协同过滤推荐算法. 微电子学与计算机, 2017, 34(5):132-136
    [5] 石进平, 李劲, 和凤珍. 基于社交关系和用户偏好的多样性图推荐方法. 计算机科学, 2018, 45(S1):423-427
    [6] Katarya R, Verma O P. A collaborative recommender system enhanced with particle swarm optimization technique. Multimedia Tools and Applications, 2016, 75(15):9225-9239.[doi:10.1007/s11042-016-3481-4
    [7] 王光, 张杰民, 董帅含, 等. 基于内容的加权粒度序列推荐算法. 计算机工程与科学, 2018, 40(3):564-570.[doi:10.3969/j.issn.1007-130X.2018.03.024
    [8] 孙辉, 马跃, 杨海波, 等. 一种相似度改进的用户聚类协同过滤推荐算法. 小型微型计算机系统, 2014, 35(9):1967-1970.[doi:10.3969/j.issn.1000-1220.2014.09.006
    [9] 于琨, 孙波, 海本斋. 基于超图排序和组稀疏最优化的推荐系统. 计算机工程与设计, 2018, 39(7):1996-2001
    [10] 杨丰瑞, 郑云俊, 张昌. 结合概率矩阵分解的混合型推荐算法. 计算机应用, 2018, 38(3):644-649
    [11] 田保军, 胡培培, 杜晓娟, 等. Hadoop下基于聚类协同过滤推荐算法优化的研究. 计算机工程与科学, 2016, 38(8):1615-1624.[doi:10.3969/j.issn.1007-130X.2016.08.016
    [12] 丁少衡, 姬东鸿, 王路路. 基于用户属性和评分的协同过滤推荐算法. 计算机工程与设计, 2015, 36(2):487-491, 497
    [13] 杨尚君, 孙永维, 庞宇. 基于改进鱼群算法的多无人机任务分配研究. 计算机仿真, 2015, 32(1):69-72, 102.[doi:10.3969/j.issn.1006-9348.2015.01.015
    [14] 王颖, 王欣, 唐万梅. 融合用户自然最近邻的协同过滤推荐算法. 计算机工程与应用, 2018, 54(7):77-83
    [15] 杨兴雨, 李华平, 张宇波. 基于聚类和随机森林的协同过滤推荐算法. 计算机工程与应用, 2018, 54(16):152-157.[doi:10.3778/j.issn.1002-8331.1712-0089
    [16] 高茂庭, 段元波. 结合用户聚类和评分偏好的推荐算法. 计算机应用研究, 2018, 35(8):2260-2264.[doi:10.3969/j.issn.1001-3695.2018.08.005
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

申晋祥,鲍美英.基于用户聚类与项目划分的优化推荐算法.计算机系统应用,2019,28(6):159-164

Copy
Share
Article Metrics
  • Abstract:2006
  • PDF: 2645
  • HTML: 1295
  • Cited by: 0
History
  • Received:December 08,2018
  • Revised:January 15,2019
  • Online: May 28,2019
  • Published: June 15,2019
Article QR Code
You are the first990571Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063