Naive Bayesian Lithology Recognition Based on EM and GMM
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Naive Bayesian classifier can be applied to lithologic identification. The Gaussian distribution is often used to fit the probability distribution of continuous attributes, but it is not effective for complex logging data. To solve this problem, a hybrid Gaussian probability density estimation based on EM algorithm is proposed. Logging data of the lower ancient gas Wells in the block 41-33 of Sudong are selected as training samples, and data of 44-45 Wells are selected as test samples. The experiment uses the mixed Gaussian model based on EM algorithm, to estimate the probability density of logging data variables at first, and then applies it to the Naive Bayes classifier for the lithology identification. Finally, the fitting effect of the single Gaussian distribution function was used as the comparison. The results reveal that the mixed Gaussian model has a better fitting effect and the performance of the Naive Bayes classifier for the lithology identification could be improved through this way.

    Reference
    Related
    Cited by
Get Citation

赵铭,金大权,张艳,高世臣,仲婷婷.基于EM和GMM的朴素贝叶斯岩性识别.计算机系统应用,2019,28(6):38-44

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 10,2018
  • Revised:December 04,2018
  • Adopted:
  • Online: May 28,2019
  • Published: June 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063