Relation Classification Based on Multi-Head Attention and Bidirectional Long Short-Term Memory Networks
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Relation classification is an important subtask in the field of Natural Language Processing (NLP), which provides technical support for the construction of knowledge map, question answer systems, and information retrieval. Compared with traditional relational classification methods, deep learning model-based methods with attention have achieved better performance in various relation classification tasks. Most of previous models use one-layer attention, which cause single representation of the feature. Therefore, on the basis of the existing works, the study introduces a multi-head attention, which aims to enable the model to obtain more information about sentence from different representation subspaces and improve the model's feature expression ability. Otherwise, based on the existing word embedding and position embedding as network input, we introduce dependency parsing feature and relative core predicate dependency feature to the model. The dependency parsing features include the dependency value and the location of the dependent parent node position for the current word. The experimental results on the SemEval-2010 relation classification task show that the proposed method outperforms most of the existing methods.

    Reference
    Related
    Cited by
Get Citation

刘峰,高赛,于碧辉,郭放达.基于Multi-head Attention和Bi-LSTM的实体关系分类.计算机系统应用,2019,28(6):118-124

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 13,2018
  • Revised:January 08,2019
  • Adopted:
  • Online: May 28,2019
  • Published: June 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063