Optimization of Collaborative Filtering Recommendation Algorithm Based on Hybrid Autoencoders
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The collaborative filtering algorithm has been widely used in the recommendation system. It has significant effects in implementing the new recommendation function, but there are still problems such as sparse data, poor scalability, cold start, etc. New design ideas and technical methods are needed for optimization. In recent years, deep learning has achieved outstanding results in the fields of image processing, target recognition, and natural language processing. Combining the deep neural network model with the recommendation algorithm has brought a new opportunity for the construction of a new recommendation system. In this study, a new hybrid neural network model is proposed, which consists of stack denoising autoencoder and deep neural network. It learns the potential feature vectors of users and projects and the interaction behavior model between users and projects, effectively solves data sparseness, and thus improves the quality of system recommendations. The recommended algorithm model is tested by the MovieLens film scoring data set. The experimental results are compared with traditional recommendation algorithms such as SVD, PMF, and classical autoencoder model algorithms, the recommendation quality is significantly improved.

    Reference
    Related
    Cited by
Get Citation

张杰,付立军,刘俊明.基于混合自编码器的协同过滤推荐算法优化.计算机系统应用,2019,28(5):161-166

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 26,2018
  • Revised:December 18,2018
  • Adopted:
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063