Optimization of Collaborative Filtering Recommendation Algorithm Based on Hybrid Autoencoders
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The collaborative filtering algorithm has been widely used in the recommendation system. It has significant effects in implementing the new recommendation function, but there are still problems such as sparse data, poor scalability, cold start, etc. New design ideas and technical methods are needed for optimization. In recent years, deep learning has achieved outstanding results in the fields of image processing, target recognition, and natural language processing. Combining the deep neural network model with the recommendation algorithm has brought a new opportunity for the construction of a new recommendation system. In this study, a new hybrid neural network model is proposed, which consists of stack denoising autoencoder and deep neural network. It learns the potential feature vectors of users and projects and the interaction behavior model between users and projects, effectively solves data sparseness, and thus improves the quality of system recommendations. The recommended algorithm model is tested by the MovieLens film scoring data set. The experimental results are compared with traditional recommendation algorithms such as SVD, PMF, and classical autoencoder model algorithms, the recommendation quality is significantly improved.

    Reference
    [1] Batmaz Z, Yurekli A, Bilge A, et al. A review on deep learning for recommender systems:Challenges and remedies. Artificial Intelligence Review, 2018.[doi:10.1007/s10462-018-9654-y
    [2] Ricci F, Rokach L, Shapira B, 等. 推荐系统:技术、评估及高效算法. 李艳民, 胡聪, 吴宾, 等译. 北京:机械工业出版社, 2015.
    [3] Su XY, Khoshgoftaar TM. A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 2009:421425
    [4] 冷亚军, 陆青, 梁昌勇. 协同过滤推荐技术综述. 模式识别与人工智能, 2014, 27(8):720-734.[doi:10.3969/j.issn.1003-6059.2014.08.007
    [5] 王振军, 黄瑞章. 基于Spark的矩阵分解与最近邻融合的推荐算法. 计算机系统应用, 2017, 26(4):124-129.[doi:10.15888/j.cnki.csa.005743
    [6] 马骁烊, 张谧. 基于标签卷积神经网络的文本推荐算法. 计算机系统应用, 2018, 27(8):132-137.[doi:10.15888/j.cnki.csa.006494
    [7] Zhang YF, Chen X. Explainable recommendation:A survey and new perspectives. arXiv:1804.11192, 2018.
    [8] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述. 计算机学报, 2018, 41(7):1619-1647
    [9] 王兆凯, 李亚星, 冯旭鹏, 等. 基于深度信念网络的个性化信息推荐. 计算机工程, 2016, 42(10):201-206.[doi:10.3778/j.issn.1002-8331.1406-0402
    [10] 项亮. 推荐系统实践. 北京:人民邮电出版社, 2012.
    [11] Vozalis MG, Margaritis KG. Using SVD and demographic data for the enhancement of generalized collaborative filtering. Information Sciences, 2007, 177(15):3017-3037.[doi:10.1016/j.ins.2007.02.036
    [12] 李春春, 李俊. 基于ASVD的协同过滤推荐算法. 小型微型计算机系统, 2018, 39(6):1286-1290.[doi:10.3969/j.issn.1000-1220.2018.06.031
    [13] 郑鹏, 王应明, 梁薇. 基于信任和矩阵分解的协同过滤推荐算法. 计算机工程与应用, 2018, 54(13):34-40.[doi:10.3778/j.issn.1002-8331.1803-0450
    [14] 于波, 杨红立, 冷淼. 基于用户兴趣模型的推荐算法. 计算机系统应用, 2018, 27(9):182-187.[doi:10.15888/j.cnki.csa.006496
    [15] Zhang S, Yao LN, Sun AX, et al. Deep learning based recommender system:A survey and new perspectives. arXiv:1707.07435, 2017.
    [16] 王妍, 唐杰. 基于深度学习的论文个性化推荐算法. 中文信息学报, 2018, 32(4):114-119.[doi:10.3969/j.issn.1003-0077.2018.04.014
    [17] He XN, Liao LZ, Zhang HW, et al. Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web. Perth. 2017. 173-182.
    [18] Sedhain S, Menon AK, Sanner S, et al. AutoRec:Autoencoders meet collaborative filtering. Proceedings of the 24th International Conference on World Wide Web. Florence, Italy. 2015. 111-112.
    [19] Dong X, Yu L, Wu ZH, et al. A hybrid collaborative filtering model with deep structure for recommender systems. Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, CA, USA. 2017. 1309-1315.
    [20] 潘昊, 王新伟. 基于SDAE及极限学习机模型的协同过滤应用研究. 计算机应用研究, 2017, 34(8):2332-2335, 2375.[doi:10.3969/j.issn.1001-3695.2017.08.022
    [21] 于波, 陈庚午, 王爱玲, 等. 一种结合项目属性的混合推荐算法. 计算机系统应用, 2017, 26(1):147-151.[doi:10.15888/j.cnki.csa.005490
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张杰,付立军,刘俊明.基于混合自编码器的协同过滤推荐算法优化.计算机系统应用,2019,28(5):161-166

Copy
Share
Article Metrics
  • Abstract:2376
  • PDF: 2638
  • HTML: 1635
  • Cited by: 0
History
  • Received:November 26,2018
  • Revised:December 18,2018
  • Online: May 05,2019
  • Published: May 15,2019
Article QR Code
You are the first992285Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063